“electric bike replacement battery bike battery power”

If you want to go 50mph and have a 500 or 1,000-watt monster motor on your electric bike you’ll need big expensive, heavy batteries, and you might as well buy a motor scooter or motorcycle. If you wan…

I hope someone can recommend another spotwelder or some other kind of Technic to fuse batteries with wire (except soldering) . This has been an expensive ordeal and if not even a techlab with endless lasers cutters and cool cants get this machine even to power up, its something wrong with the machine.

When choosing a battery for your bike, not only is the weight important but the volume is also important. You want your pack as small as possible so its easy to stow and easy to hide. So therefore you should consider you battery’s volume, not just its weight. For sure you need to go with a lithium chemistry and not an old school heavy and large Sealed Lead Acid (SLA) or Nickel-Metal Hydride (NiMH) chemistry.

That’s exactly correct. You’d start by welding 10 parallel groups of 4 cells each, then you’d connect those 10 parallel groups in series to make one rectangular battery. I’ve done many 10s4p packs just like that for 36V 10ah ebike batteries.

my questions are obviously related to sla’s as this is what i have now but if answers differ according to battery chemistry i would like to know this as well for future reference any info much appreciated cheers craig

I love this article and I am inspired by the knowledge here, I have a question, I need to build a 72v battery and the one I’m looking at is using 38160 cells, these cells are very expensive so how can I manage this the best using the smaller normal size cells like you’re using! Do I really have to make a battery 20 cells deep to reach this and to bump up the amp hours I would let say go 10 wide for a 30 amp hour right? Pretty close! Big battery but is it feasible or is there a better product

18650 cells, which are used in many different consumer electronics from laptops to power tools, are one of the most common battery cells employed in electric bicycle battery packs. For many years there were only mediocre 18650 cells available, but the demand by power tool makers and even some electric vehicle manufacturers for strong, high quality cells has led to the development of a number of great 18650 options in the http://electricbikemotor.net few years.

Regarding you question, if I understand you correctly, it seems that your 18650 lithium battery will be smaller than the old NiCad battery, so you have extra room in the battery box that needs to be filled, correct? My recommendation is to use some type of fairly rigid foam to fill the space. It adds almost no weight and it also helps cushion the battery pack.

Do you by any chance have some spare parts you can swap in? A spare controller would you let you know if the controller is faulty and tripping early. Another battery would show you if the problem was battery related.

Then I took the sense wire labeled B1 and soldered it to the positive terminal of the first parallel group (which also happens to be the same as the negative terminal of the second parallel group, as they are connected together with nickel strip).

NiMH-Nickel Metal Hydride. This was the battery of choice for military application and the first-gen Prius hybrid car. Very reliable and stable, with a long cycle life. It has a high nickel content, so its expensive now (but the nickel can be re-cycled). With a low C-rate, you need a very big battery to draw high peak amps. Perhaps not a problem on a car with its huge battery pack, but on a bicycle, the smaller pack restricts the user to low amp-draw performance.

After writing my question, I did more research on these cells regarding overcharging and over-discharging and I see where you’re coming from regarding not having connections between the parallel cell blocks to smooth out differences between individual cells. So as a permanent installation, it’s not going to work. However, I’ve had another thought, which I’ve put at the final paragraph.

” electric bike replacement battery”

Gotcha. Can you recommend a manufacturer that sells a two wire version? Maybe I can look around their products and see if they sell any 7S cells, rather than sifting through all the manufacturers on Alibaba. Searches for “2 wire MBS” didn’t yield much. Thanks again for your help with this!

I purchased the 220v welder, which obviously was intended to run on non-US half of a phase 220v, Of course we have full single phase 220v, so could you supply me with a hint on how to wire the unit for US 220 v.

100~240VAC Universal AC input Full range LiFePO4/Lithium Ion/Lead Acid 4000W Battery Charger Two S2500 model in parallel. Power:4000Watts; Protection function: / Overload / Over voltage / Over temperature / Over current / Reverse polarity / Power off or trickle after finished charging; 2 years warranty

The spacers you linked to make battery building a bit easier as you can set it up modularly, but as you indicated, they add a good amount of volume to the battery. I like to make my batteries as small as possible so I rarely use them. When I do, I use these ones, but it’s not very often.

This pattern continues until we’ve got all 10 parallel groups connected. In my case, you can see that the first and last parallel groups aren’t welded on the top side of the pack. That is because they are the “ends” of the pack, or the main positive and negative terminals of the entire 36V pack.

The nickel is surprisingly soft, which means you can use an ordinary pair of scissors to cut it. Try not to bend it too much though, as you want it to remain as flat as possible. If you do bend the corners with the scissors, you can easily bend them back down with your finger.

I have now come to the conclusion however that i want a pack that is 48V and capable of running a 1000w motor for atleast an hour. I live in a hilly area, i use a downhill bike (heavy) and im not the smallest guy. Im feeling a bit insecure about putting too many cells in parallel. Through the years i’ve read that the consesus is that more than 4 cells in parallel is a risk. Since a 13S4P pack is about 12Ah (with good batteries) i was wondering if you had any input on how i should move on?

Landcrossers Hailong E-Bike Battery. Case Material:ABS Aluminium alloy. Fuse Installation position:Inside on the PCB. Fuse Diameter(mm):5. Fuse Length(mm):30. Fuse Current: 30A. 1 x Lithium Battery wi…

I have built a few 13s lithium batteries in the past year following your instructions. Thanks. I have taken one of the batteries apart to check its condition as it is the middle of winter here in Winnipeg, Canada. Two parallel sets were out of balance with the rest of the pack. I was wondering if there is a way to use my imax b6 balance chargers to rewire the battery and keep each parallel pack in balance for sure! This way I will bypass the bms. Does this make sense?

Charge current depends on the cells. Most cells can take at least 500mA, some considerably more. It’s hard to know what cells you’re using. Assuming they are 18650pf Panasonic cells like I used here, 1A per cell would be fine, giving you a charge rate of 3A. They can actually take more than that, but there’s no reason to push them too hard if you don’t have to.

LiFePo is 30 to 50% heavier and 10-20% more expensive than LiMn/LiNiCoMn. It’s safe but mainly, it’s got at least double the cycle life of LiMn/LiNiCoMn and seems to have an almost indefinite shelf life.

However… I’m thinking about extending the range of my 250W ebike (a Greenedge CS2) by wiring a battery in parallel as a one-off project. My thinking is that as it would halve the load on each of the batteries, it would reduce output current and voltage drop under load. This I’m thinking would allow use of a simpler constructions, since the stress on each cell would be reduced.

Nissan, Imara, Microvast, and Zero E-motorcycles are now using NMC after extensive testing. Let’s take a quick run down memory lane to show how battery chemistry has evolved in just a few short decades. The following is not the order of their invention, just what my foggy memory recalls as seeing them used in E-bike battery packs.

3. Yes, 18650’s with capacity ratings of 6000 or 8000 mAh are fake. The technology simply doesn’t exist to put that much energy in a cell that size on an economical level. In a few years we might be there, but not right now. Currently, the biggest cells are in the high 3,000 mAh range for 18650’s. 26650’s are larger cells and so those can have higher capacities, but there are many fewer options and variety of 26650 cells, so 18650’s are the common cells used in ebike packs.

I’m sorry to hear about your bad experiences with AliExpress. I’ve done a lot of business there, and I’d say only around 5% of my transactions have been problematic. They have great buyer protection though and every time I’ve either gotten a full refund or had my product replaced at no cost. If you want a BMS from a source other than AliExpress or eBay, I recommend a company called BesTechPower. They make the highest quality BMS’s I’ve seen and they are the ones I use on my “top shelf” batteries. They are pricier, but you definitely get what you pay for. Just email their contact addresses and they can help you choose a BMS. http://www.bestechpower.com/

The most noteworthy battery supplier is based in the USA and is offering lithium packs based on high quality cells.  A new vendor in 2015 is Lunacycle.com , so…check them out for a multitude of different packs at a very reasonable price.

Panasonic and Samsung are the only manufacturers I know of that are producing this chemistry (several batteries for motor scooters manufacturers buy these and re-label them as their own). Since you would have to buy the bare cells in order to solder together your own pack, I wouldn’t have mentioned these just yet, but…EBAY-seller supowerbattery111 is selling these, and…he will also professionally spot-weld the cells into groups for a small fee, which reduces your pack-building efforts down to about 1/10th of what it would be otherwise. His main business seems to be refurbishing cordless tool battery packs that have worn out.

Next comes the heat shrink tube. Large diameter heat shrink tube is hard to find, and I got lucky with a big score of different sizes from a Chinese vendor before his supply dried up. Your best bet is to check sites like eBay for short lengths of heat shrink in the size you need.

Nickel Cadmium was the old standard for rechargeable consumer cells in the familiar AA, C, 9V series. They are known for robust characteristics, a good cycle life, and high discharge capabilities. They are still widely used in cordless power tools, R/C toys and similar applications that demand large currents, but for nearly everything else NiCad’s have been replaced by NiMH and Lithiums.

Here is a an example of a large format soft pouch LiPo pack with 13 cells, and a BMS. This pack was built using cobalt LiPo soft cells with a BMS from a Chinese factory for an electric bike. You can see the top cell has been squished, causing the cell to fail and the BMS to shut down the battery, and not allowing it to charge or discharge. This pack is small and light (7lbs).  This $500 pack is now ruined, but  all is not lost since it did not start a fire, and it did NOT take the house with it.

Either way works, but my orange jig saves me one hot glue step which just makes for a cleaner looking pack. Of course it’s all the same after the pack gets covered with shrink wrap, so you can use any method you’d like. I’ve even found that some of those cylindrical ice cube trays are perfectly sized to hold 18650 cells. Cutting off the top would leave it clear for welding. I’d add some strong neodymium magnets to the backside to hold the cells in place like my orange jig has, but other than that it’s a perfect jig almost as-is.

“scooters batteries -scooters batteries”

1. Eligibility: Sweepstakes (the “Sweepstakes”) is open only to those who sign up at the online sweepstakes page and who are at least 18+ years old at the time of entry. The sweepstakes is open to the legal residents of the Contiguous USA and Canada and is void where prohibited by law. Employees of Electric Bike Technologies LLC (the “Sponsor”) their respective affiliates, subsidiaries, advertising and promotion agencies, suppliers and their immediate family members and/or those living in the same household of each are not eligible to participate in the Sweepstakes. The Sweepstakes is subject to all applicable federal, state and local laws and regulations. Void where prohibited.

I don’t know what you mean by saying your battery is 36W, batteries can’t be measured in watts. The only way to know what power your bike needs is to multiply battery voltage by controller current. If you can’t find a marking on your controller that says what its peak current is, you’d have to measure it with an ammeter, like a clamp on DC ammeter that can measure around the battery wire.

That’s a good option. You’ll notice about a 30% increase in power, as well as a 30% increase in speed. Your motor can certainly handle it, the question is if your controller can. Make sure it’s rated for 48V or you’ll need to swap in a different controller.

Most of the price involved these days in building an e-bike or buying a ready to go e-bike is the size and chemistry  of the battery pack. For the consumer its important to understand  the difference between a 24V, 36V, and 48V pack. Also know what a 10-Ah pack is compared to a 5-Ah pack.

Test the voltage of each cell to make sure that they are all identical. If your cells came straight from the factory, they shouldn’t vary by more than a few percentage points from one to the next. They will likely fall in the range of 3.6-3.8 volts per cell as most factories ship their cells partially discharged to extend their shelf lives.

With a budget in mind, here is a 36V charger (output 42V, exactly what a 36V li-ion pack needs) that I have used and found to be a good budget charger. It’s not super fast, at only 2A, but for just $20 shipped, it’s a great deal. You might have to wait about 3 weeks for it arrive from China though. http://www.aliexpress.com/item/100-240VAC-42VDC-2-0A-Lithium-LiPo-Battery-Charger-E-Bike-charger-suitable-for-10S-36V/559929087.html

To reach our intended voltage of 36V, we have to connect a number of 18650 cells in series. Lithium-ion battery cells are nominally rated at 3.6 or 3.7V, meaning to reach 36V nominal, we’ll need 10 cells in series. The industry abbreviation for series is ‘s’, so this pack will be known as a “10S pack” or 10 cells in series for a final pack voltage of 36V.

The battery pack is one of the defining aspects of any PEV project; by and large it determines the weight, range, and cost of the vehicle. For these reasons a solid understanding of the various battery types is more than a little useful.

Your method of using the tubes might work but I still worry about how much current you could safely pull out of those connections. You can definitely charge the way you described but trust me, charging 2 or 4 cells at a time gets VERY frustrating. You’ll be spending days, maybe a week, getting your battery all the way charged again.

This is our smallest battery offering specifically aimed at people who have to travel or fly with their ebike. Each module is 36V 2.7Ah, so just under 100 watt-hours, exempting it from most of the heavy shipping restrictions. You can parallel connect them for as much capacity as required, and series connect them for 72V setups. Designed and made in Canada by Grin Tech, full details here.

In 2012, the future of LiPo in e-bikes looks bright. Most large EV manufacturers are focusing on LiPo as the lithium battery power of the future. LiPo technology is developing fast and becoming safer, more reliable, cheaper, and with a higher life expectancy. Since LiPo cells are being developed to be safer, more efficient and more economical (mostly for main stream products such as the automobile) the electric bicycle industry will be able to piggy-back and utilize the newly available technology at an affordable price. Currently, the latest “best” chemistry involves Manganese-Cobalt which is a lot more stable than the cobalt chemistry of the past.

When it comes to layout, there are two ways to assemble cells in straight packs (rectangular packs like I am building). I don’t know if there are industry terms for this, but I call the two methods “offset packing” and “linear packing”.

And a final point is that a larger battery has a lower per cell stress during discharge, since the current is shared among more parallel cells. Cells that are cycled at high discharge curents (>1-2C) also exhibit lower cycle life than those cycled at low currents

Alternately, you can separate the batteries and charge each with its own charger, but then you have some small risk of reconnected the batteries when one is charged and the other is flat, if for some reason one of the batteries didn’t get charged up properly. We usually recommend leaving the packs parallel connected at all times.

In the end, I opted for a DPDT+OFF rocker switch, as using diodes introduced forward voltage drop and this interfered with charging enough for me to have second thoughts. This arrangement does require that the BMS be “flashed” to initiate it, which can be done by the charger in charging mode but for discharging, I found that shorting the B- and the P- for less than a second initiated the BMS and it then http://usebikeparts.com itself on, so I installed a reset button. If I had used a DPDT switch without an off position then I would not have needed to do this. However, when the BMS hits a low voltage group e.g. going up a steep hill, it will not automatically reset when the voltage recovers, so you need to use the reset button if you want to get the last bit out of the battery. I’m toying with latching this button when discharging, as the voltage drop knocks the controller out, so I think I’ll get a reaction like traction control, without having to manually reset the battery (which is annoying as it’s in a backpack).

However, when you factor in the shorter life cycle of lead acid batteries, they become comparable to lithium batteries over the entire life of the electric bicycle. For example, a lithium battery may cost five times the price of a lead acid battery, but it could easily last five times as long as well, making the price about the same over the life of the lithium battery. You’d have to buy at least four replacement lead acid batteries (maybe even more) by the time your lithium battery finally kicks the can.

Select items that are not included in ShippingPass will ship for free but with value shipping. Look for items sold by Walmart.com and marked with FREE shipping. You will also see this noted in checkout.

Hailong makes some of the more refined of the generic battery enclosures from china. You’ll see them online everywhere, stuffed with whatever cells and BMS circuit appropriate to the market being addressed. They secure to the water bottle eyelets on the down tube of your bike frame, and the narrow height of this pack design allows it to fit even on smaller or hybrid frame geometries that wouldn’t normally fit a pack. We have the smaller Hailong-01 enclosure in 36V (10s 5p) and 52V (14s 4p) layouts suitable for 20-25A current setups, and the larger Hailong-03 enclsoure in 36V 23.5Ah (10s 7p) and 52V 16.5Ah(14s 5p) sizes for higher current and capacity. 

Please forward to every member of ur family of em3ev! Here it’s been a great ride! Tks guys for everything. I can do mtb again bcause of your kit. My lower back and my knee been injured badly and i got fibromyalgia so without ur help my bike …

For a heavy trailer, I’d add a second brushed motor to the cart, whether the bike has a motor or not. You’d only need 24V, and here’s a discussion about powered trailers. The most important thing for going over sand is to have the fattest tires you can fit onto the trailer.

A 48 volt 20-Ah pack  contains 960 watt hours and once you get close to 1000 watt hours you are getting serious commuting range which most e-bike manufacturers promise but do not deliver…think 30 miles.

Some of the NMC sellers are advertising their chemistry as 5C, but real-world use by E-bike builders has them calling NMC a solid reliable 3C chemistry, which can provide a continuous 30A from an affordable and compact 10-Ah battery (temporary peak amp-draws can be higher, as it is with any of these chemistries). This may sound only as good as the most recent LiFePO4, but NMC is smaller, and is not as fussy about keeping the individual cells balanced.

To determine how much power you need, you’ll need to determine the voltage you want and the capacity you need to supply that power (voltage times current). Read this article to learn more about calculating your ebike’s power: http://www.ebikeschool.com/myth-ebike-wattage/

I’m not sure what cells exactly you’ve got there, but a good replacement cell (assuming it has similar specs to your cells, which you’ll have to confirm) could be the Samsung 26F cell. It’s a good quality economical battery cell. I’ve gotten them from here and had great experiences with the vendor: Samsung 26F 18650 lithium battery cells

Just kidding, here’s a little more detail. 1) Yes, actually you could just use one strip of nickel on series connections to make the electrical connection, but one strip of 0.15mm thick nickel strip can only safely carry less than 10A. Ideally you want at least one strip for every 5-7A you plan to pull through the battery. 2) You can definitely do the series connections first, it is just habit for me to do parallel connections first. Also, on larger packs I like to do parallel groups first and then glue them together and do the series connections as I glue each group. 3) People have explored this idea a bit on Endless Sphere, and while it can be done, it has a lot of room for error, mostly in keeping the spring loaded contacts permanently against the cell terminals and in keeping the contacts from corroding. Spot welding is the best method, in my opinion.

By entering the Sweepstakes you agree to receive email newsletters periodically from Electric Bike Technologies LLC. You can opt-out of receiving this communication at any time by clicking the unsubscribe link in the newsletter.

It’s hard to say for sure without seeing your work. I imagine that either you have a bad connection somewhere, or else you have some cells that are weakened and drop their voltage too low when a load is applied. I didn’t quite understand from your message: did you rebuild the battery using the cells in your Frog battery, or did you start with new ones? Old or damaged cells could cause the problem you are experiencing.

A big downside of lithium batteries is that they are much more expensive than lead acid batteries. Prices vary depending on the voltage and capacity of the lithium battery, but standard ebikes usually have lithium batteries starting in the $300 range and rising quickly from there. Most bikes I build have lithium batteries in the $400-$500 range.

I am not sure their interests align with mine. I would happily live with 1500 recharge cycles () by which time i would be sick of it anyway) instead of 2000 if I could use 3c in or out when urgently needed.

the problem i have and the bit im confused on is this, i understand the negative on the entire pack goes to the negative on the BMS and the positive of each parallel cells goes to each sense wire but where are the charge and discharge wires going ? am i corrrect in saying that the positive of the pack goes to the charge and discharge socket on the BMS and that when the pack receives its charge it charges the pack and the discharge is when the pack is under load from the output of the pack i.e what ever its connected to for example your bikes motor? in your tutorial you havent shown how you connected the parallel groups of batteries together in series to give you the final pack voltage and capacitance but i’m assuming you linked them in series to get the toal 36v but on the pictures the first and last cells are split compared to the doubled up cells you have through out. am i also correct in saying that if you have 2 batteries connected together to form a cell then you dont need a sense wire on each battery because the two batteries are considered to be the same battery and when they charge and discharge they equalize as one shunts the other ? sorry for so many questions i have googled and googled and googled and as Einstein once said the definition of madness is doing the same thing over and over and expecting a different result, many thanks in advance .

I’m mostly familiar with BesTech’s 72V BMS’s and haven’t used a 52V BMS from them, so I can’t give you a recommendation on a specific 52V (14s) BMS from them, sorry. I have used this 14s BMS twice and it’s worked great for me on two 14s7p packs I made with Samsung 26F cells.