“battery for electric bike +electric scooter battery”

my questions are obviously related to sla’s as this is what i have now but if answers differ according to battery chemistry i would like to know this as well for future reference any info much appreciated cheers craig

If you are thinking about building your own LiPo pack, a 48V / 10-Ah battery pack can be made for around $300. However to undertake this project you should research extensively on www.endless-sphere.com on how to build and take care of your pack. Expect hours of reading before you are ready to build a pack of your own.

For BMS’s, the highest quality ones come from a company called BesTechPower but they are more expensive. I have mostly used BMS’s from AliExpress. I’ve linked to a few examples of BMS’s I’ve used in the article above.

Battery manufacturers are continuing to research for developments in dozens of battery chemistries, and a couple of years ago, a big improvement to LiPo/LiCo chemistries began to be produced. A high-Cobalt cathode (LiCo) provides very good power density, but how can we make it more stable and reliable? Here’s a quote from batteryuniversity.com

Nakto/SPARK ebikes are certificated with CE, EN15194, TUV, EMC, RoHS,EPAC. High Speed Motor:it is 250Watt high performance brushless motor,powerful and fast, the Max speed can be easy to 20Mile/h, sui…

Lithium Ion electric bike batteries are ideal for those that plan to ride longer distances and or more frequent trips. The commuters dream battery, lithium batteries can stand two complete 100% discharges a day for years. Discharging the battery half way riding to work or school, then parking all day at half charge does no damage to a lithium electric bike battery. So the urgency to recharge immediately is not like SLA’s. Since discharging to 100% empty does not significantly harm lithium electric bike batteries, the usable range of the lithium electric bike battery is roughly double that of SLA’s. In typical electric bike use, Li-Ion batteries last from two to four years. Proper storage of Lithium Ion batteries is important when the electric bike will not be used for more than a few weeks. Unplug the battery from the electric bike, charge fully, and then store in a cool but not frozen, dry place.

batteries e bike battery exide electric bike battery 48v battery 48v electric bike battery 24v battery gp battery 36v battery aw battery aeg battery ev battery 48v e bike battery 3c battery ima battery bb battery More…

3. There’s something that I think you might be missing here. The factor that actually limits current draw is the controller, not the motor or the BMS. Those are “rated” for 500w and 15A, respectively, meaning they won’t overheat at those values. But both can physically pass those values if you force them to. It’s the controller that is actually “pulling” the current. So you should check your controller to see what its current limit is. If it is a 15A limit controller, then it won’t physically pull more than 15A. The fact that your battery can technically put out 1200W just means that it has “oomph” than you’re using, and you’re giving it an easy, healthy life. But if you switched to a 50A controller, suddenly you’d be pulling the maximum current that your battery can supply (and probably overheating your motor if you pull that 50A for a long time).

If you don’t find that, there’s still a chance that it’s the problem, and that the cells simply rose up to a higher voltage and matched the others again once the load disappeared. But it also may be that the load is too high for the BMS. Do you have a cycle analyst? You could slowly increase the throttle and watch how much current you are drawing until the point of cutoff. If it’s well below 40A then you’ll know it’s not a high current cutoff.

Author’s note: Hi guys, Micah here. I run this site and wrote this article. I just wanted to let you know real quick about my new book, “DIY Lithium Batteries: How To Build Your Own Battery Packs” which is available in both ebook and paperback format on Amazon and is available in most countries. It goes into much deeper detail than this article and has dozens of drawings and illustrations showing you every step of designing and building a battery. If you find this free site helpful, then taking a look at my book can help support the work I do here to benefit everyone. Thanks! Ok, now back to the article.

RC packs may be fine for enthusiasts that know what they’re doing, but even telling others about them scares me! FIRE! And secondly, they typically don’t have any BMS so don’t have any inherent protection from over-under voltage or balancing. FIRE!

The exact amount of range you’ll get per battery and motor varies greatly and depends on factors like terrain, speed, weight, etc. Suffice it to say though that if you double your current battery capacity, you’ll see an approximate doubling of your range as well.

When soldering these wires to the nickel strip, try to solder between two cells and not directly on top of a cell. This keeps the heat source further from the actual cell ends and causes less heating of the battery cells.

NiMH-Nickel Metal Hydride. This was the battery of choice for military application and the first-gen Prius hybrid car. Very reliable and stable, with a long cycle life. It has a high nickel content, so its expensive now (but the nickel can be re-cycled). With a low C-rate, you need a very big battery to batteries for electric scooter high peak amps. Perhaps not a problem on a car with its huge battery pack, but on a bicycle, the smaller pack restricts the user to low amp-draw performance.

I am planning on making a 6S2P LifePO4 pack that has a voltage of 19.2V. I have a 6 cell BMS that does balancing (and that is intended to work with 6 LifePO4 cells). I need some help selecting a charger to charge this pack, however, particularly regarding the charger’s voltage specification.

A lithium battery is the heart of any electric bicycle. Your motor is useless without all of that energy stored in your battery. Unfortunately though, a good ebike battery is often the hardest part to come by – and the most expensive. With a limited number of electric bicycle battery suppliers and a myriad of different factors including size, weight, capacity, voltage, and discharge rates, finding the exact battery you are looking for can be challenging and lead to unwanted compromises.

This makes sense. Yes, it would be possible. You could wire balance connectors and extra discharge plugs to make three packs out of your one 13s pack, such as two 6s packs and a 1s, or two 5s packs and a 3s, etc. Then you’d charge each one, one at at time, using your imax B6 charger. It would take a while, but that’s how you’d do it. Just be careful to not get your connectors confused, as you’ll have three sets of balance wires and three sets of discharge wires.

If you are excited about this improvement in battery chemistry, (NCM being 25% smaller/lighter that the fussy LiFePO4, and 300% better C-rate than the reliable and non-fussy LiMnO2) you may also be asking the question…What chemistry is next?

Thank for the great article. I made battery packs already, do you have any recommendations on chargers. I have a 53 volt pack 30 amp hr. I don’t know what charger to buy, and I’m worried as lithium batteries tend to blow up if not handled correctly.

If you are concerned about the speed and power of an electric bike, pay attention to the motor size. Electric motor size is measured in watts and usually ranges between 250 and 750. When deciding on the appropriate amount of wattage, think about factors like the weight of the rider and the desired speed and terrain for the bike. If your child will mostly be on a flat surface, lower wattage should suffice; if they are planning to ride up and down hills, look for a bike with a larger motor.

The next consideration is ensuring that the battery is large enough for your required travel range; it’s no fun having a battery go flat before the end of your trip. In order to determine the range that you will get from a given battery, you need to know both the watt-hour capacity of the battery, and how much energy you use per kilometer. Sounds complicated? Not really. As a rule of thumb most people riding an ebike at average speeds consume about 10 Wh/km from their battery, and this makes the math very easy. If you have a 400 watt-hour battery, you can expect a range of 40km. A 720 watt-hour battery? ~72km

Landcrossers Hailong E-Bike Battery. Case Material:ABS Aluminium alloy. Fuse Installation position:Inside on the PCB. Fuse Diameter(mm):5. Fuse Length(mm):30. Fuse Current: 30A. 1 x Lithium Battery wi…

With the Multimeter I see that is everything OK, I see the voltage of the 4S in B+ and P-, but when I connect the motor nothing happens, the voltage goes to zero. At this moment I want to discharge the batteries and I connect B- to B+ and is working OK, of course.

Bigger is better! And I know a better way batteries should be made. I use 560 of the Panasonic 18650b battery cells with 3.4AH per cell, wich in the end gave me (7kwh battery ebike!), that’s more than 300+ miles battery range easy. And I’ve learned that these batteries can be assembled like Lego blocks instead and eliminate harmful heat from soldiering, and wastful glueing. The benefit is a battery pack that can have removable, repairable, and reconfigurable battery cells! Its called (battery blocs) patiented by Shawn McCarthy. Unfortunatly its not the cheap method and requires a 3d printer to make. It spaces the cells slightly apart for better air cooling. Mine are packed into 4 PVC tubes run either at 103.6v or 51.8v. I believe along with some experts that a BMS is not required and can cause battery cells to fail early!, and a proper set voltage monitor and regulator prevents over discharge damage and you need to a timer and monitor the cell voltages with cell monitors while charging. Cooling setup would be a pluse to extend life. That’s all for now, best luck to all battery builders.

In the end, I opted for a DPDT+OFF rocker switch, as using diodes introduced forward voltage drop and this interfered with charging enough for me to have second thoughts. This arrangement does require that the BMS be “flashed” to initiate it, which can be done by the charger in charging mode but for discharging, I found that shorting the B- and the P- for less than a second initiated the BMS and it then latched itself on, so I installed a reset button. If I had used a DPDT switch without an off position then I would not have needed to do this. However, when the BMS hits a low voltage group e.g. going up a steep hill, it will not automatically reset when the voltage recovers, so you need to use the reset button if you want to get the last bit out of the battery. I’m toying with latching this button when discharging, as the voltage drop knocks the controller out, so I think I’ll get a reaction like traction control, without having to manually reset the battery (which is annoying as it’s in a backpack).

From what I can tell, the Faraday Porteur uses a 36V 5.8AH battery made from the same cells I used on the battery in this article. They only have two cells in parallel though, not three like in my battery shown here. You can build a battery just like theirs, or a 36V battery of any capacity. You could make a 12AH battery and triple your total range! Heck, you could even take a premade battery like this one and just replace the discharge cable with a XLR connector – it’d be an auxillary battery over three times as large as theirs for 2/3 the price!

I have found this BMS which is cheap (necessary for my project) and it is shipped from the UK. Because it is so cheap do you think that it may not be balancing? http://www.ebay.co.uk/itm/400984825723?euid=0502c7e2b2c744ec8857879d65d46e08&cp=1

http://www.aliexpress.com/item/SUNKKO-709A-1500W-welding-machine-small-battery-spot-Welder-with-welding-pen-for-18650-pack-welding/32384498157.html?spm=2114.01020208.3.132.T8tjqL&ws_ab_test=searchweb201556_0,searchweb201602_1_10037_10033_507_10032_10020_10017_10021_10022_10009_10008_10018_101_10019,searchweb201603_1&btsid=06a7c525-fb11-425d-8614-730ff4b43d7e

If you are using 2.5AH cells then yes, it will be 5AH with a 2p configuration. If you use cells with higher capacity, like Sanyo GA cells that are 3.5AH, then you’ll have a 7AH pack with only 2p. Make sure your cells can handle the current that your electric scooter (and namely the controller) will try to draw from it.

“battery pack for electric bike -lithium ion bike battery”

NO Memory Effect to reduce the capacity over time, longer life, more eco-friendly 1.5V / 1200MAH – Same as regular AA battery For toys, game controller, wireless mouse, wireless keyboard, remote and so on SAFE & ECO & NON TOXIC – Approved by FCC CE & RoHS, the 1200mAH AA lithium batteries are guaranteed

Rated capacity: 10Ah. Recommended to be used with 36V 250W electric bicycle motor. Model: bottle type. Cycle life: About 1000 cycles. For this battery, it is better to be applied to motor in 350 W or …

Many people are tempted to use cheaper 18650’s sold under names like Ultrafire, Surefire and Trustfire. Don’t be one of those people. These cells are often marketed as up to 5,000 mAh but struggle to get more than 2,000 mAh. In actuality, these cells are just factory rejects, purchased by companies like Ultrafire and repackaged in their own branded shrink wrap. These B-quality cells are then resold for use in low power devices like flashlights where their weaker performance is less of an issue. If a cell costs less than $2, it simply isn’t worth it. Stick to the name brand cells, like my favorite Samsung cells, if you want to build a safe, quality ebike battery.

Maybe another way forward is to buy a pannier mounted supplementary battery pack (a proper one with a BMS) and to install it in parallel with the main one. The question then becomes whether to connect between the sprung terminals that go to the motor controller (which I believe to be the best thing to do) or into the little charging port jack. I presume that the charging port is connected to the charging side of the BMS and I don’t know how much current that port would take or whether it’s even a good plan to charge and discharge the main battery at the same time. I see significant potential for a high current through that small jack once I discharge via the main battery and a voltage difference exists between the supplementary batter and the main battery.

The purchase price is often a turnoff for many people, but in reality $200 for a good hobby-level spot welder isn’t bad. All together, the supplies for my first battery, including the cost of the tools like the spot welder, ending up costing me about the same as if I had bought a retail battery of equal performance. That meant that in the end I had a new battery and I considered all the tools as free. Since then I’ve used them to build countless more batteries and made some huge savings!

Amazing article, just what I needed. Have been doing LOTS of research but have struggled to find any real answers on which charger I should buy for my homemade battery. I am making a 48V 13s4p battery with a BMS (with balancing) like yours but am stuck as to whether I need to buy a normal bulk charger or a ‘smart charger’ that will balance the battery. My question is will the BMS balance the battery on its own or will I need to get a charger that balances also?

I understand that the Ebay battery may run low, but as it is running in parallel to the “Whale”, I’ simply use the “Whale” LED display as rough guid to both batteries charge state (assuming I fully charge both batteries each time before I ride).

I need to build a 56-60v battery that I will be using to convert a bike with 20″ moped rims and a 48v 1500w 46.5 kmh — 28.8mph 13 * 5T winding rotor hub motor. I’m looking more for range than speed (mostly flat where I live), although I would like to top 30mph. If my math is right, in order to accomplish this I need to build a pattern that is 16s6-8p. Which 18650 cells should I choose? I’m also not sure which BMS I should use? And then which controller is best for this battery and motor setup? I’ll post the links to the parts I’m currently sourcing and let me know if you think there is a better set up or parts. Thank you

I don’t know what you mean by saying your battery is 36W, batteries can’t be measured in watts. The only way to know what power your bike needs is to multiply battery voltage by controller current. If you can’t find a marking on your controller that says what its peak current is, you’d have to measure it with an ammeter, like a clamp on DC ammeter that can measure around the battery wire.

36V10Ah Li-Ion NiCoMn “Little Frog” ABS shell ebike battery pack. Included 2p10s 5Ah polymer cells, 1pcs 15A continuous discharge current BMS, 1pcs 36V2.5Amps EMC-120 Lithium Ion battery Alloy shell charger.

There are many different types of 18650 cells out there to choose from. I prefer to use name brand cells from companies like Panasonic, Samsung, Sony and LG. These cells have well documented performance characteristics and come from reputable factories with excellent quality control standards. Name brand 18650’s cost a bit more, but trust me, they are worth it. A great entry-level cell is the Samsung ICR18650-26F cell. These 2,600 mAh cells should cost somewhere around $3-$4 in any decent quantity and can handle up to 2C continuous discharge (5.2 A continuous per cell). I get my Samsung 26F cells from Aliexpress, usually from this seller but sometimes I’ve seen a better price here.

18650 cells, which are used in many different consumer electronics from laptops to power tools, are one of the most common battery cells employed in electric bicycle battery packs. For many years there were only mediocre 18650 cells available, but the demand by power tool makers and even some electric vehicle manufacturers for strong, high quality cells has led to the development of a number of great 18650 options in the last few years.

Nickel Metal Hydride batteries are about 20% lighter and 30% less voluminous than a NiCd pack of the same capacity. They have similar discharge and charge characteristics, but because of the higher energy density they are available in higher capacities than NiCd packs. Because NiMH is safe for disposal in the landfill while Nickle Cadmium is not, the metal hydride has almost completely replaced cadmium in most consumer batteries.

I bought a triangle pack in March 2016…. I reported the issue to EM3ev and they were very concerned. Asked me to do a few tests and it was determined that the battery had a faulty BMS….. They did a replacement pack with upgraded batteries for free….. I …

A better and simpler solution would be, as you said, to carry a second battery and just swap the connector from the old battery to the new one when the old battery is depleted. There are a few types of bottle batteries out there, I recommend googling “bottle battery” if you haven’t yet, you’ll likely find a few options. I don’t know if this is the same model as yours, but some common styles similar to your description can be found here and here.

More than likely this problem is BMS related. The BMS usually trips in that scenario for one of two reasons: 1) The load pulled by the controller is too high for that BMS, or 2) one or more cells are weak or damaged and when the load is applied strongly, it causes the voltage of that parallel group to drop below the LVC of the BMS.

I have a homemade battery made up of 84 NCR18650b cells that I bought (in other words, I didn’t make the battery myself). Anyway, I lost the charger for it at Burning Man, and now I’m going nuts trying to figure out what kind of charger to buy. The arrangement of the batteries is odd. Part of the battery looks pretty straight forward in what I believe is a 8s6p design, but the rest look different… they are set up like a 4×3 rectangle framed by 2 L’s. I would have happily uploaded a picture, but that doesn’t seem possible. Is there anyway I can send you a picture to show you what I mean?

In many situations, especially if you are replacing a battery pack on an existing setup, the voltage is defined by the controller electronics and cannot be readily changed. Otherwise, the voltage determines the maximum speed at which your vehicle will travel, and you have a degree of freedom in selecting the voltage to meet your performance expectations. If you know the volts/rpm for the motor, then it is straightforward to calculate how fast it will go for a given voltage. Select a value that gives an unloaded speed of about 20% greater than your desired cruising speed for best performance.

My thinking is that because each of the batteries is only 50% stressed, that the probability of problems due to overcurrent, etc. would be negated and I wouldn’t use a BMS for the supplementary battery.

With a budget in mind, here is a 36V charger (output 42V, exactly what a 36V li-ion pack needs) that I have used and found to be a good budget charger. It’s not super fast, at only 2A, but for just $20 shipped, it’s a great deal. You might have to wait about 3 weeks for it arrive from China though. http://www.aliexpress.com/item/100-240VAC-42VDC-2-0A-Lithium-LiPo-Battery-Charger-E-Bike-charger-suitable-for-10S-36V/559929087.html

I buy that batteries for electric scooters canada cells, Samsung ICR18650-26F. The cells have 3,9V, is a little too, only one with 3,82 and the other 3,87. I want to do a pack with 4parallel and 7serie (28 cells), it is acceptable conect them? Any sugestion is welcome.

A cell that provides close to a “real world” 2.8-Ah per 18650 cell is pretty impressive, and the 3C current-producing capability is perfect for E-bikes (a 15-Ah pack can provide a continuous 45A, and our favorite power level of 30A can be provided by a very small 10-Ah pack). If you know of anyone who builds a pack out of these, please contact us, as we are very keen to discover whatever strengths or weaknesses they may have. If you are shopping to buy these, make certain you get these specific part numbers, because similar part numbers will only have half the C-rate.

Secondly, what is your take on modular plastic battery spacers (e.g. http://www.ebay.co.uk/itm/50x-EV-Pack-Plastic-Heat-Holder-Bracket-Battery-Spacer-18650-Radiating-Shell-New/351681365193?_trksid=p2047675.c100005.m1851&_trkparms=aid%3D222007%26algo%3DSIC.MBE%26ao%3D1%26asc%3D36381%26meid%3Dfc487881e617412ba361731154a742b5%26pid%3D100005%26rk%3D5%26rkt%3D6%26sd%3D262123820960). Clearly this adds a significant volume penalty and a smaller weight / cost one, but if this is not an issue then how would you rate vs glueing? I can see the benefit of having a space between the cells to limit heat / electrical conductivity in the event of some kind of melt down, but any thoughts?

“build an electric bike bike batteries”

If you want a LiPo battery pack, one of your better choices if you want to save money and have a lot of output amps is build one of your own from a Hobby King packs. This requires a lot of time and knowledge, not only in building the pack but also in managing it.  LiPo batteries can be extremely dangerous and prone to burst into fire if not assembled with a lot of precautions (BMS) and cared for properly.

Used PL-350 electric bike kit, The battery does not charge. Charger is fine but only shows a red light. It sat dead for about a year. Then the controller showed about 80% after charging. Everything wo…

Thank for the great article. I made battery packs already, do you have any recommendations on chargers. I have http://electricbicycletechnologies.com 53 volt pack 30 amp hr. I don’t know what charger to buy, and I’m worried as lithium batteries tend to blow up if not handled correctly.

If none of our own battery offerings meet your needs, we can also highly recommend the knowledgeable folks at Batteryspace.com and EM3EV as alternate suppliers of lithium battery packs in a wide range of capacities, form factors, and voltages. 

RC motors and RC batteries used what E-bikers considered to be fairly lower voltages (14V-22V), which RC enthusiasts needed in order to keep the batteries small in the compact RC planes. The number of E-bikes outside of China is low compared to the the number of global RC products. People who would never ride a bicycle under any circumstances might have several expensive RC models. Since RC components were designed to use lower voltages, the users tweaked their systems to draw more amps for better performance. RC buyers didn’t care about the occasional fire (a rare event), they wanted higher-amp batteries.

Now you’ve got all the info you should need to make your own electric bicycle lithium battery pack. You might still need a few tools, but at least you’ve got the knowledge. Remember to take it slow, plan everything out in advance and enjoy the project. And don’t forget your safety gear!

When it comes to nickel strip, I also like to use Aliexpress. You can also find it on ebay or even a local source if you’re lucky. Once I started building lots of batteries I began buying pure nickel strip by the kilogram here, but in the beginning I recommend you pick up a smaller amount. You can get pure nickel strip for a good price in smaller amounts from a seller like this one, but you’ll still get the best price by buying it in kilo or half kilo quanitites.

http://www.aliexpress.com/item/SUNKKO-709A-1500W-welding-machine-small-battery-spot-Welder-with-welding-pen-for-18650-pack-welding/32384498157.html?spm=2114.01020208.3.132.T8tjqL&ws_ab_test=searchweb201556_0,searchweb201602_1_10037_10033_507_10032_10020_10017_10021_10022_10009_10008_10018_101_10019,searchweb201603_1&btsid=06a7c525-fb11-425d-8614-730ff4b43d7e

I’ve been reading a bit about how Batterybro.com makes sure to test there batteries are genuine, and how it seems they still get a lot of fake batteries from China. When you buy on Aliexpress.com how to you know and make sure the batteries you buy are genuine? there’s a lot of sellers how did you find yours?

I assume you mean 52V (14s, or 14 cells in series) which is a somewhat common lithium ion battery configuration. It works with most 48V setups but provides a little more power than a standard 48V (13s or 13 cell) battery. A good charger I recommend for 52V 14s batteries is this one.

Sizing a bike correctly is important for pedaling efficiency and safety. Fitting a bike involves many factors. However, the basic considerations before buying a bike include frame size, seat height, and…

Offset packing results in a shorter pack because the parallel groups are offset by half a cell, taking up part of the space between the cells of the previous parallel group. However, this results in a somewhat wider pack as the offset parallel groups extend to each side by a quarter of a cell more than they would have in linear packing. Offset packing is handy for times where you need to fit the pack into a shorter area (such as the frame triangle) and don’t care about the width penalty.

I want to build a 36v ebike battery for my 36v 500w motor. What battery you recommend for me which gives the enough current and capacity. My plane is to build a battery with 40 cells 10 in s and 4 in p,

There are two prevalent ideas in pack constructing in these modern days…one is to use larger pouch-like soft cells to construct the pack. The stealthiest battery chemistry by far is LiPo, large cells with power-dense cobalt in the anode chemistry, such as what comes in Hobby King cells. Here is what I mean by “large cell” LiPo. These are soft pouches and large. When you use a pack made of these it will consist of fewer wired together cells than if you use small cylinder cells.

I wouldn’t say incompatible but us 220 uses the full phase peak to peak of both legs of the elec drop. European and others uses a half phase (I believe) where zero to peak is 220v. Have you had a chance to look into this for me as my welder and box of new 18650’s are sitting idle waiting for me to start welding. Thanks

Your method of using the tubes might work but I still worry about how much current you could safely pull out of those connections. You can definitely charge the way you described but trust me, charging 2 or 4 cells at a time gets VERY frustrating. You’ll be spending days, maybe a week, getting your battery all the way charged again.

Why does this formula work? Think about it: heat shrink (unless stated otherwise) usually has a 2:1 shrink ratio, so if I need something with less than twice the circumference (or perimeter rather, since my pack isn’t really a circle) of my pack. Since large diameter heat shrink is quoted in half circumference (flat width) sizes, and I want heat shrink with a circumference of a bit more than the perimeter of my pack, then I know I need the half circumference size to be a bit more than half of my pack’s perimeter, which is equal to the height plus the width of my pack.

I have an unrelated problem. I am prototyping a 1/3 scale model of a top fuel funny car.It’s 5 ft long, 2ft wide, wt. is approx. 100lbs.. I need to go 120 mph in under 4 seconds in 333 feet. Will the 5405 mtr. suffice? I know your going to ask alot of tech. questions but thats all I have for now.Any help in this quest for speed is greatly apprecated. Thank you robert lathrop

Thanks again for the great info, that is really helpful. I just have one last question. On the XLR connections there is a hot, neutral and ground. It appears on the battery you linked to that there are just two wires, how can I ensure which prongs of the male XLR connection on the Porteur are hot and negative? Also, do I just leave the ground spot on the female XLR connection open since there is just a hot and negative wire?

Please see the video’s on RCgroups under LiPo fires. A simple 2200maH 3S battery pack blew the lid off a secured 55caliber ammunition can. Putting a LiPo pack in a closed metal case is a real “bomb” waiting to happen. See all the videos on RCgroups that show what happens when a battery is over-charged or over-discharged inside air-tight causes. The real solution is to make the case have a “preferred direction” of discharge……which can be very powerful. This is done by drilling holes in the case. But it stops the explosion factor. The best thing is to have a BMS on or inside the battery. Even if the cheapy Hobby King voltage monitor, that is much better than nothing at all. Also consider putting in a voltage monitor that has a temperature guage attached. When ever the pack skin gets above 85 deg C, you are in real danger of “vent and flames”. The temperature and voltage are that two big things that can make your battery pack safe………….also store the pack where if it does go to “vent and flames”, no human being will get burned.

“48 volt lithium bicycle battery _cheap electric bikes”

Battery: 36V 8AH lithium battery. Power: 250W. The frame folds via a 2 part locking mechanism which ensures the catch safely remains locked when the bike is in use and can be operated with one hand fo…

We also maintain stock of replacement vertical seattube batteries that have been in use in the eZee bicycle line since time immemorial. If you have an eZee bike circa 2008-2012 with the Phylion lithium battery pack, you’ll be in for a serious upgrade with over twice the capacity in the same size and weight.

Thanks for the info! I have read about builders that used Sony Konion LiMn cells that were removed from Makita Drill packs. The constant theme of their reports show that the thing they seem to like the most, is that the cells seem to just stay in balance. So much so that, several have built packs with no BMS. If there is a measurable LiMn shelf life issue compared to other chemistries, it doesn’t seem to bother the DIY pack building crowd.

2. Agreement to Rules: By participating, you agree to be fully unconditionally bound by these Rules, and you represent and warrant that you meet the eligibility requirements set forth herein. In addition, you agree to accept the decisions of Electric Bike Technologies LLC, as final and binding as it relates to the content. The Sweepstakes is subject to all applicable federal, state and local laws.

It makes very little difference whether you have a small geared motor, a large direct drive motor, or a mid-drive motor. The mileage and range figures for a given battery have to do with how you use the ebike, not which motor system is on the bike.

Typically you can expect somewhere between 25 and 70 miles of travel on a single charge of an ebike. If you’re riding hard on full power expect less; manage your battery life well and you could get more.

With the voltage known, the next item to figure out is how many amp-hours will be required to achieve your desired trip distance without the battery running flat. This depends of course on how much pedaling you contribute to the effort, how fast you are traveling, and the terrain you are on. The following table is based on minimal pedaling effort.

When you buy a Hobby King pack, it will have a number of these large cell LiPo’s strung together like this 6 cell in-series (6S) pack. The big downsides of this pack is that it will only last you in best case maybe 300 charges and it is volatile, and susceptible to possible fire if not well managed and cared for.  When using cobalt-based LiPo, it is best to use some kind of BMS, and also you should charge it in a safe location.

First of all, NCR18650B cells cannot be discharged at 2C. Those are 5A MAX cells, and really you should keep them closer to 1C to keep them cool and happy. They are economical cells. They do better when in large parallel groups so you can take advantage of their high capacity without the downside of their low discharge rate. They are great cells, but not for low AH packs.

Whether you’re shopping for a turn-key commercially available electric bike, or trying to find or build a good battery for an e-bike conversion, being able to find the right battery for an electric bike is a difficult task.  The right battery pack is the most difficult part of the e-bike equation. Keep in mind that even if you’re buying a turn-key electric bike, the lithium battery is more than likely the most expensive component in it, and…not all lithium batteries are created equal, so you should know what you are getting before you buy the ebike.

thanks for detail explanation , I was enjoj reading it. Well, I am interesting why did you pick this tipe of battery, I was thinking to use LiFePO4, I know there are usualy 3.2V it is less than 3.6V like here? Also, can you explain me how to calculate max current of battery, it says that you get 8.7Ah, but how much Ampers and what is the power of battery, how many Watts (P = U * I)? Furthermore, without welding, can I do on contact connection, like for example are battery in remote control?

That’s a tough one to answer. It depends on the power of the battery (typically 24, 36 or 48V), the power of the bike (limited in the UK to 250W), the bike’s battery management system, and the way you ride. Some bikes allow you to choose different levels of assist to prioritise speed or battery life, which makes predictions of battery life even more difficult.

Some of the NMC sellers are advertising their chemistry as 5C, but real-world use by E-bike builders has them calling NMC a solid reliable 3C chemistry, which can provide a continuous 30A from an affordable and compact 10-Ah battery (temporary peak amp-draws can be higher, as it is with any of these chemistries). http://electrichuntingbikes.com may sound only as good as the most recent LiFePO4, but NMC is smaller, and is not as fussy about keeping the individual cells balanced.

You’ll need someway to hold your cells in a straight line while welding, as free-handing is harder than it looks. I have a nice jig (that I received as a free ‘gift’ with the purchase of one of my welders) for holding my cells in a straight line while welding. However, before I received it I used a simple wooden jig I made to hold the cells while I hot glued them into a straight line.

This is the old technology for e-bikes that is heavy as bricks and does not have longevity. Lead acid will double the weight of your electric bike. Unless you have to because of money restraints, we advise to steer way clear of lead acid batteries.  Your bike will have a completely different feel and range if you spend the money on one of the new lithium technologies.

Next, I added the third parallel group after the second, hot gluing it in place in the same orientation as the first, so the top of the pack alternates from positive terminals to negative terminals and back to positive terminals along the first three parallel groups.

Hi, if this is the first time you’ve heard about us, we recommend that you search “bmsbattery” or “bms battery” on Google or any other search engine to find out more about our excellent products, service and good reputation.  Time has proven that we are the best

It is also possible in principle to series connect two 36V batteries to make a 72V setup, but the only battery we have that is intrinsically designed for this is our LiGo modules. With all other batteries, it is essential to use a pass diode across the output of each battery so that when one BMS circuit trips it does not get exposed to a large negative voltage. We have a special series battery cable with this diode built in available here.

A higher voltage setup therefore needs fewer amp-hours to deliver the same range. So a 24V 8Ah battery can deliver 192 watt-hours, while a 48V 4Ah pack also has 192 watt-hours. Assuming that both batteries are of the same chemistry, then you could expect they would weigh the same, cost the same, and provide the same performance on appropriately designed ebikes (ie, one designed for 24V and the other for 48V).

Excellent, excellent, excellent (did I mention excellent) motor! So much fun, so much torque. I bought mine with 30q 52v battery, unbelievable power. Done about 300 km yet but absolutely no regrets. Get the 42 teeth Lekkie ring, makes worlds of difference. The new color display is also …

Great article! Have ordered everything BUT i have a big problem with the spotwelder. Most homes in europe are limited to 10A and this spotwelder alone drags 15A just to powerupp!!!! I can even start it without blowing both fuses! And when welding it wants 50A-800A which you need a an actual POWERPLANT for!

RC packs may be fine for enthusiasts that know what they’re doing, but even telling others about them scares me! FIRE! And secondly, they typically don’t have any BMS so don’t have any inherent protection from over-under voltage or balancing. FIRE!

Be warned: some less-than-honest vendors try to pass off nickel plated steel for the pure stuff. They often get away with it because it’s nearly impossible to distinguish between to the two with the naked eye. I wrote a whole article on some methods I developed for testing nickel strip to make sure you get what you paid for. Check it out here.

The bike was more than happy to run and pull me along as long as the throttle was kept very low (<~30%) but as soon the throttle was turned more or I came across a slight gradient uphill the system would cut off (no lights or power). I then have to plug the battery into my charger to 'reset' it before I can then plug it back into my bike and make it work again. I have to keep the throttle low whilst I am riding on the bike before it cuts out but if the wheel is spinning freely in the air then I can max out the throttle and make the motor run at full speed. [redirect url='http://bestelectricbikebattery.com//bump' sec='7']

“electric bike battery 48v -battery bicycle”

Regarding that welder, I’ve used it on a 20A circuit but I don’t own it (it belongs to a friend of mine) so I can’t give you the best firsthand experience as I’ve only used it at his place on a 20A circuit. My welders, which are similar but a slightly earlier model, are run on a 20A circuit at my home. I live in Israel and we have 220V wiring at home like in Europe, so I can’t tell you for sure how it will work on 110V. If there is the option of running it off 220V in your garage or laundry room, that could be another option, but I’ve heard of people running on 110V in the US without problems so I can’t say for sure. Sorry I’m not more help on that front.

Unless you’ve got a specific design need, it feels to me like the two best value at the moment for a typical E-Bike build are 36v15Ahr and 48v10Ahr. With the choice being LiNiCoMn for smaller/lighter/cheaper or LiFePo for lifespan/higher-C but a bit more heavy/bulky/expensive.

Hi, if this is the first time you’ve heard about us, we recommend that you search “bmsbattery” or “bms battery” on Google or any other search engine to find out more about our excellent products, service and good reputation.  Time has proven that we are the best

Note that in the article it says that LiFePo is the most commonly used chemistry. I think that depends on where you are looking. I suspect that LiNiCoMn or the older LiMn is actually most common in terms of total unit cells because they’re the cheapest and get used in the low end E-Bike market in China.

The BMS I chose is a 30A maximum constant discharge BMS, which is more than I’ll need. It’s good to be conservative and over-spec your BMS if possible, so you aren’t running it near its limit. My BMS also has a balance feature that keeps all of my cells balanced on every charge. Not all BMS’s do this, though most do. Be wary of extremely cheap BMS’s because that’s when you’re likely to encounter a non-balancing BMS.

Used PL-350 electric bike kit, The battery does not charge. Charger is fine but only shows a red light. It sat dead for about a year. Then the controller showed about 80% after charging. Everything wo…

Hi I need help! I am building my own battery pack from old laptop batteries (18650’s). I bought the cheep $250 48v 1000w ebike conversion kit on ebay. I have many questions! It seems the perfect number of cells to connect in series are 13! This is a big problem for me because I am cheep and I already bought the Imax B6 battery balancer charger. I also bought 7x 6s balancer leads and 5x 4s leads. The Imax has a max charge voltage of 22.2v (so it sais in the manual), and a max balance of 6 cells at once. I also bought the parallel balance charging board. I don’t want to charge two or three packs at once to just have to turn around and charge one separately. So now I’m faced with the decision of making a 12 series battery or a 15 series battery (I will buy 5s leads in this case). The problem is with the 12 series battery the nominal voltage is only 43.2. Or a 15 series battery with a nominal voltage of 54. Which I’m pretty sure is a big no no because the controller is only meant to handle 48v within reason (13s max charge voltage of 53.3 and 12s 49.2 at 4.1 v per cell). But if I make it a 12s, running around most of the trip at 44v, will this drain the Amps faster because the motor wants 48v? I’m thinking no but just wanted some confirmation on that and if the controller can handle more volts. I could make a 15 series batter and just charge to 3.6 or 3.7 volts. Is this hard on the cells?

hi i was considering adding a second set of batteries to my ebike in parallel to double the range but heared on a thread somewhere that this can damage/overload the controller which i suspect is a load of tosh but can anyone confirm/clarify this as i assumed the amp hour capacity was just that and the max amp output was just that, the maximum that can be drained at once, my understanding is it doesnt matter what amp hr the pack is as the amps drawn into the controller is governed by the demands of the motor which wont change if i have 2 packs connected.

In the end, I opted for a DPDT+OFF rocker switch, as using diodes introduced forward voltage drop and this interfered with charging enough for me to have second thoughts. This arrangement does require that the BMS be “flashed” to initiate it, which can be done by the charger in charging mode but for discharging, I found that shorting the B- and the P- for less than a second initiated the BMS and it then latched itself on, so I installed a reset button. If I had used a DPDT switch without an off position then I would not have needed to do this. However, when the BMS hits a low voltage group e.g. going up a steep hill, it will not automatically reset when the voltage recovers, so you need to use the reset button if you want to get the last bit out of the battery. I’m toying with latching this button when discharging, as the voltage drop knocks the controller out, so I think I’ll get a reaction like traction control, without having to manually reset the battery (which is annoying as it’s in a backpack).

The bike was more than happy to run and pull me along as long as the throttle was kept very low (<~30%) but as soon the throttle was turned more or I came across a slight gradient uphill the system would cut off (no lights or power). I then have to plug the batteries for electric scooters canada into my charger to ‘reset’ it before I can then plug it back into my bike and make it work again. I have to keep the throttle low whilst I am riding on the bike before it cuts out but if the wheel is spinning freely in the air then I can max out the throttle and make the motor run at full speed.

I continued with all 10 sense wires, placing the last one on the positive terminal of the 10th parallel group. If you aren’t sure about which groups are which, or you get confused, use your digital voltmeter to double check the voltages of each group so you know you are connecting each wire to the correct group.

Rechargeable Electric Bicycle Batteries 48V 20AH Lithium Ion Battery. These are 18650 cell based batteries (similar 18650 type cells are used in the Tesla car). Use it for ebike, scooter etrikes. Batt…

I’m a little worried that your batteries aren’t what you think they are. If they really are AA sized, which is rare in the lithium battery world, then they are not 3,000 mAh. Next, 10 cells in series is going to give you 36V, which is twice what your 18V drill is rated for. 5 cells in series and 2 in parallel would be a better method. I usually recommend a BMS but you can skip it if you have another way of diligently monitoring your cell voltages and then charging using an RC style balance charger like an iMaxB6 charger through an JST-XH connector.

Alternately, you can separate the batteries and charge each with its own charger, but then you have some small risk of reconnected the batteries when one is charged and the other is flat, if for some reason one of the batteries didn’t get charged up properly. We usually recommend leaving the packs parallel connected at all times.

The battery cells have now been assembled into a larger 36V pack, but I still have to add a BMS to control the charging and discharging of the pack. The BMS monitors all of the parallel groups in the pack to safely cut off power at the end of charging, balance all the cells identically and keep the pack from being over-discharged.

Yes, that’d work, but I’d get an additional 7s battery so you have 20s total. Also, you should know that the older your original 48V battery is, the more time it will take your new 72V combined battery to balance, as the first 13 cells will likely have less capacity in comparison to the newer cells. I made a video recently showing how to do this upgrade that you’re talking about: https://www.youtube.com/watch?v=9KHo-T74IWA

You’ll need someway to hold your cells in a straight line while welding, as free-handing is harder than it looks. I have a nice jig (that I received as a free ‘gift’ with the purchase of one of my welders) for holding my cells in a straight line while welding. However, before I received it I used a simple wooden jig I made to hold the cells while I hot glued them into a straight line.

I am planning on making a 6S2P LifePO4 pack that has a voltage of 19.2V. I have a 6 cell BMS that does balancing (and that is intended to work with 6 LifePO4 cells). I need some help selecting a charger to charge this pack, however, particularly regarding the charger’s voltage specification.

Hi Jonathon. You’d need a female XLR cable for the discharge port on your new battery (so it can plug into your Porteur’s charge port) and you’d need a second XLR connector, this time a male, for the charge port of your new battery. That way you could use your original Porteur’s charger to charge both batteries.

I’m wondering, what do you do for 6V or 12V applications where the correct number of in-series cells is ambiguous? For example, if I’m replacing a 6V SLA battery, it seems like the existing charging system would set a 1s battery on fire, but wouldn’t be sufficient to charge a 2s battery. Are there BMS’s that have VRs to step up the voltage from the charging system to the battery, and step down voltage from the battery to the charging system to facilitate a 2s battery for the application?

We sell roughly equal numbers of 36V and 48V battery packs, and all of our conversion kits and controllers work fine with both 36V and 48V (or 52V) battery options. Just because 48V is a larger number, it does not mean that a 48V ebike is intrinsically better / more powerful / faster than a 36V ebike despite what the ill-informed internet will lead you to believe. However, it is true that a given motor will spin faster at a higher voltage, and usually higher speeds will correspond to more power consumption. For most of the stock hub motor kits that we offer, a 36V battery will result in a commuting speed of 30-35 kph, while wth a 48V battery will result in closer to 40-45 kph.

Electric bikes in the UK tend to come with either Lithium Ion (Li-Ion) or Lithium Polymer (LiPo) batteries. In China, on the other hand, lead acid batteries are still the most common ones used. In 2014 – according to the China Bicycle Association / IdTechEx  – 35 million eBikes were sold on the Chinese market, and just 2.8 million of them had lithium battery.

You can also add a label or other information to the outside of your pack for that professional look. If nothing else, it’s a good idea to at least write on the pack what the voltage and capacity is. Especially if you make multiple custom batteries, that will ensure you never forget what the correct charge voltage for the pack is.

As long as you monitor your pack voltage so you don’t go too low during rides, then yes that would work. You’d simply run your discharge negative wire straight from the -1 terminal of your battery out to your controller, instead of from your -1 terminal to your BMS’s B- pad. But that removes the ability for the BMS to cut off the current when the voltage goes too low, so you’ve got to watch for that.

Offset packing results in a shorter pack because the parallel groups are offset by half a cell, taking up part of the space between the cells of the previous parallel group. However, this results in a somewhat wider pack as the offset parallel groups extend to each side by a quarter of a cell more than they would have in linear packing. Offset packing is handy for times where you need to fit the pack into a shorter area (such as the frame triangle) and don’t care about the width penalty.

“lithium bike +e bike batteries”

With the voltage known, the next item to figure out is how many amp-hours will be required to achieve your desired trip distance without the battery running flat. This depends of course on how much pedaling you contribute to the effort, how fast you are traveling, and the terrain you are on. The following table is based on minimal pedaling effort.

Lithium batteries are not 100% fire-safe. Some batteries are more dangerous than others, depending on the chemistry, whether it has BMS or not, and what kind of casing the battery is in. If the battery is cased in metal its less likely to burn your garage down, than if its encased in plastic. Also be aware that all BMS’s are not alike, some are good and others are crap, just like anything else in life.

To calculate the max amps the battery can deliver, you have to know the max amps of the cells you used. For example, Panasonic 18650pf cells can deliver 10A continuous, and I used 3 cells in series in this battery, so the battery can deliver 3 x 10A = 30A. However, you also need to know how much current the BMS can deliver. If I put a 15A continous BMS on this pack then that would be the “weakest link” so to speak, meaning the pack with the BMS could only deliver 15A continuous.

Spot welders for batteries aren’t the same as most home spot welders. Unlike the large jaw spot welders for home workshops, battery spot welders have the electrodes on the same side. I’ve never seen them for sale in the US, but they can be found pretty easily on eBay and other international commerce websites. My full time use welder is a fairly simple model that I got here. A highly recommended source for a slightly nicer spot welder design (pictured below) with both mounted and handheld electrodes can be found here.

Sorry if this has been asked already but there are a ton of comments to wade through. Ten individual 18650 cells in series at a nominal voltage of 3.6 Volts would give me 36 volts. Assuming they are 2500 mAh a piece, then if I put 4 of these 10 cell in series packs together in parallel I would have a 10 Amp Hour battery correct? The same applies if I were to wire a pack together with 10 “4p” cells together in series. I’m trying to determine what the benefit of 10s4p over I guess what would be “4s10p”.

You’ll also want to test out the battery with a fairly light load in the beginning. Try to go for an easy ride on the first few charges, or even better, use a discharger if you have one. I built a custom discharger out of halogen light bulbs. It allows me to fully discharge my batteries at different power levels and measure the output. This specific battery gave 8.54 Ah on its first discharge cycle at a discharge rate of 0.5c, or about 4.4 A. That result is actually pretty good, and equates to an individual average cell capacity of about 2.85 Ah, or 98% of the rated capacity.

Remove all metallic jewelry. This is another tip that I can give from experience. Arcing the contacts on your battery is not something you want to happen ever, and especially not against your bare skin. I’ve had it happen on my wedding ring and once even had a burn mark in the shape of my watch’s clasp on my wrist for a week. Now I take everything off.

This makes sense. Yes, it would be possible. You could wire balance connectors and extra discharge plugs to make three packs out of your one 13s pack, such as two 6s packs and a 1s, or two 5s packs and a 3s, etc. Then you’d charge each one, one at at time, using your imax B6 charger. It would take a while, but that’s how you’d do it. Just be careful to not get your connectors confused, as you’ll have three sets of balance wires and three sets of discharge wires.

Yes, as I understand it, Nimh and NiCd batteries charge differently. I understand lithium batteries much better than those other technologies, so don’t quote me on this, but I believe that Nimh and NiCd cells have current powered through them and the voltage control is different, as opposed to lithium cells that draw current at the charger’s preset rate and then keep drawing until the voltage floats to 4.2V, at which point the already tapering charger’s current supply is cutoff and the battery is fully charged.

My question for you is, if I just want to run a BMS for balance charge purposes only and want to wire the battery discharge directly to the motor how would I do that? Would that be a good solution as long as I monitor battery pack voltage during rides?

I guess I’ll just have to risk some deterioration on the cells. I don’t think there’s much of an effect, as I did it on an old 18650 cell to test. The joint and surrounding areas were cool to the touch within 1-2s of removing the heat.

This is what I refer to “small cells”, the 18650 (cordless tool) type cells which need to be spot-welded or soldered together to form a large pack. The big advantage of these cells is they offer better cooling because of the nature of their shape to the LiPo soft pouches, and therefore have the capacity to last longer.

I don’t think there is any danger to parallel more than 4 cells. Tesla cars have literally hundreds of 18650 cells just like these paralleled. The issue is that if you ever did have a problem with one cell, like a factory defect that caused it to short circuit, it could die and drag all the other cells down with it, killing the entire parallel group. That’s why Tesla uses individual cell fusing, but that’s not really employed on the small scale like for ebikes.

48 volt 1500 watt motor 48 volt 16.5 amp Samsun cell high quality battery 2amp charger, charges in 6 hours plus battery has USB port to charge your phone Top speed 35mph high torque Comes with every t…

40% grade hills? That’s huge! You’ll definitely want a cell that can perform at high current since you’ll be pulling peak power from those cells to get up those big hills. Something like the Samsung 25R would be a good choice for this application.

HERE ARE 100 GENIUNE LG LGDAS31865 18650 2200MAH CELLS. YOU CAN’T FIND A BETTER DEAL THAN THIS. Capacity: 2200mAh. THE PHOTOS SHOW HOW WE GET THESE IN AND BREAK THEM DOWN. STOP GETTING RIPPED OFF AND …

Lipo batteries are currently the “hottest” battery choice for electric bike enthusiasts. LiPo batteries are the most power-dense type of  battery available to electric bike riders today. The problem is that LiPo battery packs for e-bikes are hard to find, especially one with high output if you are building a racing bike for riding off road.

Most lithium batteries that are designed to mount to ebikes also come with some form of locking system. These have varying degrees of effectiveness. The type with a little pin that slides into a thin sheet of steel are the easiest to steal by mangling the thin steel locking plate. Just take a look at your battery and ask yourself “how easily could I steal this battery if I had some basic hand tools and a 60 second window of opportunity?”

Rechargeable Electric Bicycle Batteries 48V 20AH Lithium Ion Battery. These are 18650 cell based batteries (similar 18650 type cells are used in the Tesla car). Use it for ebike, scooter etrikes. Batt…

Bigger is better! And I know a better way batteries should be made. I use 560 of the Panasonic 18650b battery cells with 3.4AH per cell, wich in the end gave me (7kwh battery ebike!), that’s more than 300+ miles battery range easy. And I’ve learned that these batteries can be assembled like Lego blocks instead and eliminate harmful heat from soldiering, and wastful glueing. The benefit is a battery pack that can have removable, repairable, and reconfigurable battery cells! Its called (battery blocs) patiented by Shawn McCarthy. Unfortunatly its not the cheap method and requires a 3d printer to make. It spaces the cells slightly apart for better air cooling. Mine are packed into 4 PVC tubes run either at 103.6v or 51.8v. I believe along with some experts that a BMS is not required and can cause battery cells to fail early!, and a proper set voltage monitor and regulator prevents over discharge damage and you need to a timer and monitor the cell voltages with cell monitors while charging. Cooling setup would be a pluse to extend life. That’s all for now, best luck to all battery builders.

However, when you factor in the shorter life cycle of lead acid batteries, they become comparable to lithium batteries over the entire life of the electric bicycle. For example, a lithium battery may cost five times the price of a lead acid battery, but it could easily last five times as long as well, making the price about the same over the life of the lithium battery. You’d have to buy at least four replacement lead acid batteries (maybe even more) by the time your lithium battery finally kicks the can.

So I’m going to first use a wider (285 mm to be exact) but shorter piece of shrink wrap to go around the long direction of the pack. That will seal the ends first, and then I can go back with my long and skinny piece of heat shrink to do the length of the pack.

One of the main disadvantages of lead acid batteries is their weight. There’s no beating around the bush here, SLAs are HEAVY, as you might guess by the inclusion of “lead” in the name. You’ll need a strong mounting solution on your ebike to handle the extra weight of SLAs. You should also be aware that lugging that extra weight around is going to negatively impact your range. The best way to improve the range of any electric vehicle is to reduce weight, and SLAs are kind http://huntneqip.com going the opposite way in that regard.

“lithium bike battery electric bike batteries for sale”

I have an unrelated problem. I am prototyping a 1/3 scale model of a top fuel funny car.It’s 5 ft long, 2ft wide, wt. is approx. 100lbs.. I need to go 120 mph in under 4 seconds in 333 feet. Will the 5405 mtr. suffice? I know your going to ask alot of tech. questions but thats all I have for now.Any help in this quest for speed is greatly apprecated. Thank you robert lathrop

100~240VAC Universal AC input Full range LiFePO4/Lithium Ion/Lead Acid 4000W Battery Charger Two S2500 model in parallel. Power:4000Watts; Protection function: / Overload / Over voltage / Over temperature / Over current / Reverse polarity / Power off or trickle after finished charging; 2 years warranty

the problem i have and the bit im confused on is this, i understand the negative on the entire pack goes to the negative on the BMS and the positive of each parallel cells goes to each sense wire but where are the charge and discharge wires going ? am i corrrect in saying that the positive of the pack goes to the charge and discharge socket on the BMS and that when the pack receives its charge it charges the pack and the discharge is when the pack is under load from the output of the pack i.e what ever its connected to for example your bikes motor? in your tutorial you havent shown how you connected the parallel groups of batteries together in series to give you the final pack voltage and capacitance but i’m assuming you linked them in series to get the toal 36v but on the pictures the first and last cells are split compared to the doubled up cells you have through out. am i also correct in saying that if you have 2 batteries connected together to form a cell then you dont need a sense wire on each battery because the two batteries are considered to be the same battery and when they charge and discharge they equalize as one shunts the other ? sorry for so many questions i have googled and googled and googled and as Einstein once said the definition of madness is doing the same thing over and over and expecting a different result, many thanks in advance .

One other unrelated question: Do commercially available eBike batteries generally use off-brand cells for their assembled batteries to bring cost down, or similar to the cells, do reliable eBike companies use name-brand cells and off-brand internet vendors use off-brand cells?

The Panasonic NCR18650PD cells can be purchased at Fast Tech dot Com, who reliably processed and shipped my transaction. Good prices, too, from this Chinese-based vendor. I “tested the waters” by buying just 4 cells first and will certainly be buying more from them. I’d like to make my http://bestelectricbikebattery.com e-bike pack with these cells and further inquired to AllCell to see if I could obtain one of their PCM blocks. Unfortunately, they will only sell these on bulk wholesale basis to established pack-building businesses. The DIY pack builder will have to explore other options.

Having built a 13s4p battery to the best of my ability and hooked it up to my 48V 1000W ebike conversion kit…. the lights on the throttle turned on and the wheel spun! Initially I thought the project was a success but after mounting the battery and controller onto the bike and taking the bike for a test spin I ran into a major problem.

The battery pack is one of the defining aspects of any PEV project; by and large it determines the weight, range, and cost of the vehicle. For these reasons a solid understanding of the various battery types is more than a little useful.

“The secret of NMC lies in combining nickel and manganese. An analogy of this is table salt, in which the main ingredients of sodium and chloride are toxic on their own but mixing them serves as seasoning salt and food preserver. Nickel is known for its high specific energy but low stability; manganese has the benefit of forming a spinel structure to achieve very low internal resistance but offers a low specific energy.

When soldering these wires to the nickel strip, try to solder between two cells and not directly on top of a cell. This keeps the heat source further from the actual cell ends and causes less heating of the battery cells.

Hi Sundaram, I’m not aware of many 18650 LiFePO4 cells, are you sure you are using that chemistry instead of standard lithium ion? Perhaps can you provide a little more detail about the specific cells you’re using?

Spot welders for batteries aren’t the same as most home spot welders. Unlike the large jaw spot welders for home workshops, battery spot welders have the electrodes on the same side. I’ve never seen them for sale in the US, but they can be found pretty easily on eBay and other international commerce websites. My full time use welder is a fairly simple model that I got here. A highly recommended source for a slightly nicer spot welder design (pictured below) with both mounted and handheld electrodes can be found here.

Linear packing, on the other hand, will result in a narrower pack that ends up a bit longer than offset packing. Some people say offset packing is more efficient because you can fit more cells in a smaller area by taking advantage of the space between cells. However, offset packing creates wasted space on the ends of parallel group rows where gaps form between the edge of the pack and the ‘shorter’ rows. The larger the battery pack, the less wasted space is taken up compared to the overall pack size, but the difference is negligible for most packs. For my battery, I decided to go with offset packing to make the pack shorter and fit easier into a small triangle bag.

Many retailers suggest charging the battery at least once a month if the bike is not ridden much, and say that the more the bike is ridden, the stronger the battery will be. All batteries, though, will deteriorate in time and they will need to be replaced and disposed. When that time comes, it’s best to ask your local retailer how to dispose of the battery, but bear in mind that local authorities should provide recycling and disposal facilities.

Regarding your second question: I wouldn’t say the max amperage of the BMS is “dependent” on the controller, but it should be chosen with consideration to the controller. Think of it this way: your controller is what decides how much current your battery is going to supply. The controller is basically pulling that current from your battery. If it’s a 20A controller, that means the most it will pull out of your battery is 20A. So if you plan on riding in a style that uses full power for long periods of time (like hill climbing, dirt riding, etc) then you’ll need to make sure your BMS is rated at least 20A continuous. However, most people that ride on flat roads spend very little time at peak current. My ebike’s controller is a 22A unit, but I spend most of my time around 10-15A when cruising. A 20A continuous BMS would be good insurance in that case, because it means my BMS is rated to handle more continuous power than I generally will pull through it.

I’m a little worried that your batteries aren’t what you think they are. If they really are AA sized, which is rare in the lithium battery world, then they are not 3,000 mAh. Next, 10 cells in series is going to give you 36V, which is twice what your 18V drill is rated for. 5 cells in series and 2 in parallel would be a better method. I usually recommend a BMS but you can skip it if you have another way of diligently monitoring your cell voltages and then charging using an RC style balance charger like an iMaxB6 charger through an JST-XH connector.

Thanks for the info! I have read about builders that used Sony Konion LiMn cells that were removed from Makita Drill packs. The constant theme of their reports show that the thing they seem to like the most, is that the cells seem to just stay in balance. So much so that, several have built packs with no BMS. If there is a measurable LiMn shelf life issue compared to other chemistries, it doesn’t seem to bother the DIY pack building crowd.

With the voltage known, the next item to figure out is how many amp-hours will be required to achieve your desired trip distance without the battery running flat. This depends of course on how much pedaling you contribute to the effort, how fast you are traveling, and the terrain you are on. The following table is based on minimal pedaling effort.

Sorry Benoit, but that won’t work. The BMS will expect the full 10 cells and when it sees that cells are missing, it will assume they are at 0V and not provide any power. You need a 7s BMS, which are pretty commong. 8s will be harder to find for li-ion, but you could do 8s with LiFePO4 and those 8s BMS’s are common.

Thanks for the kind words! Unfortunately I don’t have access to a schematic. I got that BMS from a Chinese reseller and I would be surprised if even he has a schematic. I have seen people parallel BMS boards on a single pack to get higher current output but I haven’t tried that myself.

If you are thinking about building your own LiPo pack, a 48V / 10-Ah battery pack can be made for around $300. However to undertake this project you should research extensively on www.endless-sphere.com on how to build and take care of your pack. Expect hours of reading before you are ready to build a pack of your own.

Alibaba.com offers 176,519 electric bike battery products. About 29% of these are electric bicycle, 22% are rechargeable batteries, and 8% are electric bicycle battery. A wide variety of electric bike battery options are available to you, such as 36v, 24v, and 48v. You can also choose from lithium battery, lead acid battery. As well as from 10 – 20ah, 21 – 30ah, and > 40ah. And whether electric bike battery is paid samples, or free samples. There are 176,478 electric bike battery suppliers, mainly located in Asia. The top supplying countries are China (Mainland), Taiwan, and Vietnam, which supply 99%, 1%, and 1% of electric bike battery respectively. Electric bike battery products are most popular in North America, Western Europe, and Northern Europe. You can ensure product safety by selecting from certified suppliers, including 39,164 with ISO9001, 14,565 with Other, and 6,300 with ISO/TS16949 certification.

Hello Micah: Thanks for this most interesting and useful article! I want to build a battery in a 39mm x 520mm seatpost for fueling a 250W motor that normally uses a 7.2 Ah – 25 V bottle-shaped battery. The new seatpost battery should only have an autonomy of 7 miles of steep hills (40%) between each daily charge. What are your recommendations? Happy day! Fred

Sorry if this has been asked already but there are a ton of comments to wade through. Ten individual 18650 cells in series at a nominal voltage of 3.6 Volts would give me 36 volts. Assuming they are 2500 mAh a piece, then if I put 4 of these 10 cell in series packs together in parallel I would have a 10 Amp Hour battery correct? The same applies if I were to wire a pack together with 10 “4p” cells together in series. I’m trying to determine what the benefit of 10s4p over I guess what would be “4s10p”.

I’m mostly familiar with BesTech’s 72V BMS’s and haven’t used a 52V BMS from them, so I can’t give you a recommendation on a specific 52V (14s) BMS from them, sorry. I have used this 14s BMS twice and it’s worked great for me on two 14s7p packs I made with Samsung 26F cells.

I understand that the Ebay battery may run low, but as it is running in parallel to the “Whale”, I’ simply use the “Whale” LED display as rough guid to both batteries charge state (assuming I fully charge both batteries each time before I ride).

In the rush to upgrade from lead acid to the latest NiMH and lithium packs, it seems that most companies forgot about the old venerable Nickel Cadmium battery as a suitable option for ebikes. Although they are somewhat heavier than the NiMH and lithium options, they are still a substantial weight savings over lead. NiCd packs have had a solid and proven track record in demanding rechargeable battery applications.

i noticed that bms installation is different (as i guess) from the video (https://www.youtube.com/watch?v=rSv9bke52eY&index=10&list=LLDXj2cy8mbQoc0dz3RO3zFw) i have watched before. In this video bms wires were connected on the negative poles of batteries lifepo4. In my amateur opinion i could not understand how we organize BMS connections for my 13s pack. if you illuminate me, i will be preciated.

With the Multimeter I see that is everything OK, I see the voltage of the 4S in B+ and P-, but when I connect the motor nothing happens, the voltage goes to zero. At this moment I want to discharge the batteries and I connect B- to B+ and is working OK, of course.

Actually I have ran into a problem – a few days ago I was riding it up a hill on a hot day when the power cut off and it wouldn’t start again. When I tried to charge it, the light on the charger just flickered from green to orange. I took out the battery and found that one of the cells had corroded from what looks like overheating. I think that the battery pack failure was most likely caused by too much of a load applied to the battery pack.

Your battery pack size is based on voltage and amp-hours. The higher the voltage and the higher the amp hours of your battery, the more range your battery will give you. A 48V 10-Ah pack gives you 480 watt hour (48 X 10). This gives you an easy way to determine exactly how much battery you are buying. The wattage of a battery is the only accurate determinant to judge what range your finished ebike will have.

If you want to test cells from different vendors, the best thing to do is run them through a discharger, preferably a fancy graphing one, and preferably at a high current rating close to the maximum discharge rating. Fake cells are lower quality and won’t be able to provide the same capacity, and will have a larger voltage sag under higher loads.

12V increments are easier to do with LiFePO4 due to the 3.2V per cell. So for 12V, 24V, 36V and 48V they go 4 cells, 8 cells, 12 cells and 16 cells. Li-ion is more annoying because the 3.7V per cell doesn’t play as nicely. The general convention for the same 12V increments is 3 cells, 7 cells, 10 cells, and 13 or 14 cells. 3 cells is just a bit low for a 12V system (about 11V nominal) but will work for most applications until the voltage drops to about 9.5 or 10V depending on your device’s cutoffs. Regarding the balancing issue, if you’re using those packs that claim to remain in balance then I’d imagine you can just trust them. If their packs had problems with balance then they’d probably be having tons of returns. Worst come to worst you can occasionally open the case and measure the cells to make sure they are all staying balanced. One word of advice: be very careful with the series/parallel switch setup. If you make a mistake or the switch melts you could end up shorting your batteries and ruin the whole lot…

I’m wondering, what do you do for 6V or 12V applications where the correct number of in-series cells is ambiguous? For example, if I’m replacing a 6V SLA battery, it seems like the existing charging system would set a 1s battery on fire, but wouldn’t be sufficient to charge a 2s battery. Are there BMS’s that have VRs to step up the voltage from the charging system to the battery, and step down voltage from the battery to the charging system to facilitate a 2s battery for the application?

This makes sense. Yes, it would be possible. You could wire balance connectors and extra discharge plugs to make three packs out of your one 13s pack, such as two 6s packs and a 1s, or two 5s packs and a 3s, etc. Then you’d charge each one, one at at time, using your imax B6 charger. It would take a while, but that’s how you’d do it. Just be careful to not get your connectors confused, as you’ll have three sets of balance wires and three sets of discharge wires.

RC packs may be fine for enthusiasts that know what they’re doing, but even telling others about them scares me! FIRE! And secondly, they typically don’t have any BMS so don’t have any inherent protection from over-under voltage or balancing. FIRE!

“electric bike motors and batteries _ebike battery”

Safety disclaimer: Before we begin, it’s important to note that lithium batteries inherently contain a large amount of energy, and it is therefore crucial to handle them with the highest levels of caution. Building a DIY lithium battery requires a basic understanding of battery principles and should not be attempted by anyone lacking confidence in his or her electrical and technical skills. Please read this article in its entirety before attempting to build your own ebike battery. Always seek professional assistance if needed.

2. Lithium-Ion Shrink Wrapped Shrink Wrapped Lithium-Ion Batteries are housed in a soft PVC heatshrink material. It protects the battery from moisture and short-circuits, but not from being dropped or punctured. View Shrink Wrapped Lithium E-Bike Batteries

Finally found it. WOW!! Exactly what was needed. I struggle with conceptualizing verbal descriptions. You solved that! With the new JP Welder from Croatia my first welded build will soon be a reality. Thanks for all you do for eBiking!

That’s a tough one to answer. It depends on the power of the battery (typically 24, 36 or 48V), the power of the bike (limited in the UK to 250W), the bike’s battery management system, and the way you ride. Some bikes allow you to choose different levels of assist to prioritise speed or battery life, which makes predictions of battery life even more difficult.

3. Lastly, I assume if the BMS & battery were able to produce the 50A X 24V watts of 1200W that my electric motor would only ever use the 500W it is rated for? As in the E bikes controller would only draw around 500W?

This is also why the common and affordable RC smart-chargers are powered by a separate DC power supply. Many RC enthusiasts spend a day at a park, and while flying an RC plane, they have several other battery packs that are charging from their cars 12V system.

I was wondering, though, if I could use thick gauge wire instead of nickel strips (copper wires are much more accessible). Would there be any downsides to that, given that I’m going to be using solder anyway?

Hey Brian, good question. You can actually do regenerative braking this way, the only problem is that you won’t be using the balancing circuit part of the BMS as it will charge straight back through the discharge circuit. Theoretically this is fine, with the exception of one specific case where this could be a problem. If you charged your battery at the top of a huge hill and then immediately rolled down that hill for a long time while using regenerative braking, you could actually overcharge the battery. That scenario is pretty rare though.

15. This promotion is in no way sponsored, endorsed or administered by, or associated with Facebook, Twitter, Youtube, Pinterest, LinkedIn or Google. You understand that you are providing your information to the owner of this sweepstakes and not to Facebook, Twitter, Youtube, Pinterest, LinkedIn or Google.

Lithium Polymer is by far the lightest battery option out there. LiPoly cells that can handle very high discharge currents are becoming widely available and are especially popular in the R/C crowd for electric airplanes and helicopters, but ebike LiPoly packs are often made with cells that are only rated to 1C or 2C, and these don’t usually deliver a very good cycle life count. The cells are produced in a thin plastic pouch rather than a metal can, making them structurally quite vulnerable unless supplied with a rigid enclosure. Although Lithium Polymer has a reputation for being volatile and failing with spectacular pyrotechnics, there are companies making cells these days that are quite stable and can pass the fullUN 38.3 overcharging and puncture tests without any flames.

Short for bicycle motocross, BMX is a type of bike designed for dirt, street, flatland, and park rides. This is a more casual form of cycling, which riders enjoy for both pleasure and sport. BMX riding…

Rated Capacity: 10Ah. Recommended to be used with 36V 250W electric bicycle motor. 36V 750W 20″ Front Tire e-Bike. Charge Current: 2A. Model: Bottle Type. 1 Year manufacturer warranty for CHARGER. Use…

The higher C-rate of 3C for the newer LiFePO4 (from A123) keeps these popular so you don’t need a huge pack to get fairly adequate amps. To get a continuous 24A, you’d only need a 8-Ah battery. Fairly affordable, and small enough to fit in a bike frame.

When it comes to buying your cells, you might be able to find a local source, or you can order them straight from Asia. I prefer the second option, as you’ll usually get a much better price going straight to the source, even when paying for international shipping. One caveat though: do your best to ensure that your source sells genuine cells and not knock-offs. Do this by checking feedback and using a payment method that ensures you can get your money back if the product isn’t as described. For this reason, I like to buy my cells on Alibaba.com and AliExpress.com.

Edit: if this article was helpful, you may like our newer article on the latest NCM/NCA battery chemistries, and also our article on high-performance batteries that are NOT made from LiPo. If you have narrowed your battery choice down to LiFePO4, make sure to check out Dogmans expert guide to LiFePO4 batteries.

This is a very simple layout where each column of 3 cells is connected in parallel and then the 10 columns are connected across in series from left to right. The BMS board is shown at the far right end of the pack. You’ll see how the pack represented in the drawing will come together in real life shortly.

From what I can tell, the Faraday Porteur uses a 36V 5.8AH battery made from the same cells I used on the battery in this article. They only have two cells in parallel though, not three like in my battery shown here. You can build a battery just like theirs, or a 36V battery of any capacity. You could make a 12AH battery and triple your total range! Heck, you could even take a premade battery like this one and just replace the discharge cable with a XLR connector – it’d be an auxillary battery over three times as large as theirs for 2/3 the price!

Lithium Iron Phosphate is currently the most common lithium battery used in Ebike applications. It is considered the most stable lithium battery type available today (low risk of fire) and has a reasonably high life expectancy of over 1000 charges.

The very first consideration when choosing a battery pack is ensuring that it can handle the current draw of your motor controller. If you have a 40A motor controller, but your battery is only rated to deliver 25A max, then either the BMS circuit will shut off the battery at full throttle, or the battery will be stressed and have reduced cycle life.  The converse, having a battery that has a higher current rating than what your controller will draw, is no problem at all. In fact, it can be quite beneficial. 

That’s exactly correct. You’d start by welding 10 parallel groups of 4 cells each, then you’d connect those 10 parallel groups in series to make one rectangular battery. I’ve done many 10s4p packs just like that for 36V 10ah ebike batteries.

One of the easiest ways to increase the current handling capability and range is to put two or more batteries in parallel. In general, with lithium batteries of the same nominal voltage, this is no problem. It is perfectly fine to mix old and new lithium batteries in parallel, or even batteries from different manufacturers and with different capacities, so long as they are the same voltage. We stock a parallel battery joining cable to facilitate connecting packs this way. 

Sure, it is possible to solder directly to the cells (though it can be tricky without the right tools). The problem with soldering is that you add a lot of heat to the cell and it doesn’t dissipate very quickly. This speeds up a chemical reaction in the cell which robs the cell of its performance. The result is a cell that delivers less capacity and dies an earlier life.

Wow, that’s a really interesting way to do it. So their auxiliary battery connects to the charge port of the primary battery, which means it’s not actually powering the bike but rather just charging the primary battery, which then powers the bike. Not the most efficient way to do it, but it’s simple and elegant.

In 2012, the future of LiPo in e-bikes looks bright. Most large EV manufacturers are focusing on LiPo as the lithium battery power of the future. LiPo technology is developing fast and becoming safer, more reliable, cheaper, and with a higher life expectancy. Since LiPo cells are being developed to be safer, more efficient and more economical (mostly for main stream products such as the automobile) the electric bicycle industry will be able to piggy-back and utilize the newly available technology at an affordable price. Currently, the latest “best” chemistry involves Manganese-Cobalt which is a lot more stable than the cobalt chemistry of the past.

For any other case, lithium batteries’ advantages greatly outweigh SLAs. Of course, for your specific ebike you might have other reasons that could sway you either way. At the end of the day, your ebike is all about you. I hope this information helps you make the right choice for your own battery needs.

The eZee flat packs are one of the nicer rear rack battery options that we’ve dealt with, featuring a locking on/off key switch, and a rail system to slide into the eZee double-decker rack or attach with our more universal CNC battery anchors. They hold up to 70 cells, allowing for both a 36V 19Ah (10s 7p) and 48V 14Ah (13s 5p) options. The 36V pack has UN38.3 certification for air shipping, and can handle up to 40A motor controllers fine, while the 48V pack shouldn’t be used above 25A.

Sorry Benoit, but that won’t work. The BMS will expect the full 10 cells and when it sees that cells are missing, it will assume they are at 0V and not provide any power. You need a 7s BMS, which are pretty commong. 8s will be harder to find for li-ion, but you could do 8s with LiFePO4 and those 8s BMS’s are common.

13. Winners will be emailed directly by the marketing manager. Must respond within a week. Winner may also be announced on Facebook.               14. Sponsor: The Sponsor of the Sweepstakes is Electric Bike Technologies LLC, 951 River Road, Croydon, PA, United States;

I wouldn’t say incompatible but us 220 uses the full phase peak to peak of both legs of the elec drop. European and others uses a half phase (I believe) where zero to peak is 220v. Have you had a chance to look into this for me as my welder and box of new 18650’s are sitting idle waiting for me to start welding. Thanks

Why do we alternate sides of the pack during the welding process? We do it because in this way we connect the positive terminal of each parallel group to the negative terminal of the next group in line. That’s how series connections work: always positive to negative to positive to negative, alternating between the two.

The Panasonic 18650pf is a good cell, that’s the one I used here. I also like the Samsung 26F, though it’s a fairly low power cell, and the Samsung 29E which is a bit higher power cell. The Samsung 30Q is a fairly new cell that has good specifications batteries electrical doesn’t have as long a life – everything is a trade-off.

Some of the NMC sellers are advertising their chemistry as 5C, but real-world use by E-bike builders has them calling NMC a solid reliable 3C chemistry, which can provide a continuous 30A from an affordable and compact 10-Ah battery (temporary peak amp-draws can be higher, as it is with any of these chemistries). This may sound only as good as the most recent LiFePO4, but NMC is smaller, and is not as fussy about keeping the individual cells balanced.

Almost all consumer electronics that have a plug-in charger these days are powered with lithium batteries because they can store about 3 times more energy than NiMH. Small devices like cell phones, mp3 players, and other gadgets typically have lithium-polymer packs, as these can be formed in conveniently shaped thin rectangular pouches. Larger devices like laptops and the new lithium cordless power tools generally use cylindrical Lithium-ion cells of a size smaller than a ‘C’ but bigger than a ‘AA’. These are spot welded in series/parallel combination to give an appropriate voltage and capacity for the job.

“bike batteries +”

Furthermore, if you have more capacity than required, then you also have the opportunity to do partial charging of the battery with a Satiator or similar device, so that instead of charging the pack to 100% to squeeze out every km, your standard charge is set to a lower 80 or 90% level. This can have a pronounced effect increasing  both the cycle life and calendar life of a lithium battery by several fold. 

My daily driver ebike has 8 cells paralled (14s8p) and it’s been working great for a long time. You can certainly make two 13s4p packs and parallel them after the fact, but don’t be afraid of making a single pack. As long as you use good quality cells, the risk of a parallel group dying is incredibly small.

Regarding the cell question, its a mixture of both. Cheap ebikes use cheap cells. You can bet the Sonders ebike had the cheapest cells available. Name brand ebikes usually use Samsung cells, but sometimes LG and occasionally Panasonic cells can be found in name brand ebikes (the Panasonics are some of the most expensive and so they are rarer). That being said, I’ve seen some shadier internet sites selling high quality (and genuine) Samsung/Panasonic packs, and I’ve seen some nice ebikes with some no-name cells. You should always check with the vendor/manufacturer if you want to ensure you’re getting good cells. Unfortunately, it can be hard to verify the cells yourself though without voiding the warranty, as they are usually sealed under shrink wrap. A good vendor will be happy to confirm the cells for you ahead of time and may even be able to show you some pictures of opened packs to verify.

Connections are made with solid Nickel strips, spot welder to each cell. Each cell and each series is tested before assembly. The BMS will prevent over charging and will balance the cells after a full…

An older battery technology that was popular around 10 years ago as replacment for lead acid in some more expensive commercially available e-bikes. Today it has been obsoleted  in e-bike applications because of the recent availability of LiPo and LiFePO4 cells. NiMH is a finicky technology to deal with. The packs do not have long life expectancy, and have to be treated delicately. One big batteries for electric scooters canada for DIYers is that its very hard to safely charge NiMh cells that have been soldered together in parallel. Extra care is needed for NiMH in both assembling and charging.

Regarding the soldering of cells: generally it is not recommended as no matter how you do it, a soldering iron will still transfer more heat than a spot welder. That being said, I have seen packs that have been welded using both solid or braided copper wire. I’ve also seen someone use copper wick soldered to the cells terminals. It’s impossible to know exactly how much of an effect that the heat transfer had on the cells but if you don’t mind taking a risk of some level of deterioration of the cells performance, then it technically is possible to solder the cells together.

Capacity: 20Ah. 36V 3A Charger. Lifecycle of single cell: >85% capacity after 1500 cycles, > 70% capacity after 3000 cycles. (<1C discharge rate and <1C charge rate). It will take about 7 hours to cha... Something that’s worthy of note, is that “AllCell” is using a block of graphite/wax composite Phase-Change-Material (PCM) using a patented formula. If a single cell suddenly starts running hot, the heat is instantly spread out across the PCM block, which would prevent a thermal runaway event. According to a recent press-release: LiFePO4 is currently widely available for purchase as e-bike packs complete with BMS on ebay and other online merchants. Mostly it is sold by small companies. Also, most of the commercially available e-bikes powered by lithium batteries are using the LiFePO4 chemistry. This is our smallest battery offering specifically aimed at people who have to travel or fly with their ebike. Each module is 36V 2.7Ah, so just under 100 watt-hours, exempting it from most of the heavy shipping restrictions. You can parallel connect them for as much capacity as required, and series connect them for 72V setups. Designed and made in Canada by Grin Tech, full details here. Power ratings of E-bike kits and the C-rates of batteries for sale are ALL highly suspect. The endless-sphere authority on batteries and their C-rates is Doctor Bass. He has nothing to gain from misrepresenting any chemistry or battery manufacturer. I must admit I am annoyed if a new battery is claimed to be a 5C chemistry, but testing shows it to survive better at 3C, however…a misrepresented battery that is a true 3C is still a good thing. NCA…LiNiCoAl / Lithium Nickel Cobalt Aluminum (sometimes called NCR) The battery chemistry research industry is still driven by the HUGE global sales of laptop computers, cellphones, and cordless tools. Mass production has made the 18650 format the best cost per volume cell. The 18650 number means that it is 18mm in diameter, 65mm long, and the zero means it is a cylinder instead of a flat foil packet. (the 18650 is roughly the size of an adult male thumb) [edit: in 2014, Tesla electric cars are now using Panasonic NCA batteries] 3. Yes, 18650’s with capacity ratings of 6000 or 8000 mAh are fake. The technology simply doesn’t exist to put that much energy in a cell that size on an economical level. In a few years we might be there, but not right now. Currently, the biggest cells are in the high 3,000 mAh range for 18650’s. 26650’s are larger cells and so those can have higher capacities, but there are many fewer options and variety of 26650 cells, so 18650’s are the common cells used in ebike packs. Lithium Ion electric bike batteries are ideal for those that plan to ride longer distances and or more frequent trips. The commuters dream battery, lithium batteries can stand two complete 100% discharges a day for years. Discharging the battery half way riding to work or school, then parking all day at half charge does no damage to a lithium electric bike battery. So the urgency to recharge immediately is not like SLA’s. Since discharging to 100% empty does not significantly harm lithium electric bike batteries, the usable range of the lithium electric bike battery is roughly double that of SLA’s. In typical electric bike use, Li-Ion batteries last from two to four years. Proper storage of Lithium Ion batteries is important when the electric bike will not be used for more than a few weeks. Unplug the battery from the electric bike, charge fully, and then store in a cool but not frozen, dry place. 100~240VAC Universal AC input Full range LiFePO4/Lithium Ion/Lead Acid 4000W Battery Charger Two S2500 model in parallel. Power:4000Watts; Protection function: / Overload / Over voltage / Over temperature / Over current / Reverse polarity / Power off or trickle after finished charging; 2 years warranty If you want to step up a notch on the quality ladder, here is another good charger that I prefer even more, though it’s a bit more expensive: http://www.aliexpress.com/store/product/aluminum-shell-36V-42V-2Amper-Li-ion-Lipo-battery-charger-high-quality-charger-for-10S-li/1680408_32275847257.html Here at Grin we've been dealing with ebike batteries for a very long time during which we've offered over 100 variants of NiCad, NiMH, LiFePO4, LiPo, and Lithium-Ion packs in all kinds of voltages, geometries, and capacities. It's been a love/hate relationship over those years, but the more recent mass production of 18650 lithium cells for high power consumer goods like power tools has shifted things to the love side, with ebike batteries that are cheaper, lighter, and with far longer life span than we could have ever wished for in the past. We're happy to stock both frame mount and rear rack mounted batteries from 98 watt-hours to 1100 watt-hours in size to suite the needs of most electric bicycle conversions.  The sense wires generally connect to the positive of each cell group, but sometimes there is one more sense wire than parallel groups because the first sense wire is intended to connect to the negative of the first cell group, then all the subsequent sense wires connect to the positive of each cell group. Each BMS should be labeled on the board to show where each sense wire goes (B1-, B1+, B2+, B3+, etc…) Many retailers suggest charging the battery at least once a month if the bike is not ridden much, and say that the more the bike is ridden, the stronger the battery will be. All batteries, though, will deteriorate in time and they will need to be replaced and disposed. When that time comes, it’s best to ask your local retailer how to dispose of the battery, but bear in mind that local authorities should provide recycling and disposal facilities. The ShippingPass assortment is continually being optimized. Products are added and removed for lots of reasons, but the main reason is to show items that we're 100% sure we can deliver within the promised timeline. If any one battery cell varies significantly from the others, do NOT connect it to the other cells. Paralleling two or more cells of different voltages will cause an instantaneous and massive current flow in the direction of the lower voltage cell(s). This can damage the cells and even result in fire on rare occasions. Either individually charge or discharge the cell to match the others, or more likely, just don’t use it in your pack at all. The reason for the voltage difference could have something to do with an issue in the cell, and you don’t want a bad cell in your pack. Battery: 36V 8AH lithium battery. Power: 250W. The frame folds via a 2 part locking mechanism which ensures the catch safely remains locked when the bike is in use and can be operated with one hand fo... [redirect url='http://bestelectricbikebattery.com//bump' sec='7']

“battery for electric scooter +48 volt battery for electric scooter”

Is there same officially recognized method to come up with C ratings? Ping claims 2C on his LiFePo4 batteries, my Chinese-made “BMC” battery claims 3C. Can they just sort of say whatever they want? How do we determine the “real” C rating?

As a side-note, the Boeing 777 Dreamliner battery fire was using LiCo. They wanted a battery that was as light as possible, and as compact as possible. I am not an engineer, but I agree with the statement made by “Tesla” electric car maker Elon Musk, when he said that there was NOT adequate heat insulation between each cell. Better individual cell insulation would prevent a bad cell that was getting hot from heating up the surrounding cells. That is what led to a domino effect. The Tesla cars have a cell cooling system, and the on-board computer can detect and cut-off any cell-group that is getting hot.

Thanks! I’m putting together a new rig I need to tow a 50lb trailer over some soft sand…I’m realizing the proper system is paramount. Any recommendations for power/battery/controllers? DIY eBikes website?

“…The wax is micro-encapsulated within the graphite matrix. When the wax melts, there’s enough surface tension between the wax and a graphite matrix that it doesn’t leak out. You could heat the material up to 300° C (570F), and it will become soft enough for a thumbprint, but it will remain solid…”

C values seem to be as much about cell packaging as chemistry for LiFePo/LiMn/LiNiCoMn Pouch and prismatic cells with high AHr per cell tend to have a C value of about 1 to 1.5. So cheap packs both cased and shrink wrapped or from suppliers like Ping seem to be like this. Cylindrical cells from A123 or Headway tend to have C values of 3C to 5C upwards. And for a fully built pack, C is as much about cells in parallel as anything. eg 10s2p having twice the C of 10s1p Again BMSBattery/GreenBikeKit are now selling LiFePo Headway based packs with a BMS and with C values of 3C to 5C and either cased or shrinkwrap.

Do you by any chance have some spare parts you can swap in? A spare controller would you let you know if the controller is faulty and tripping early. Another battery would show you if the problem was battery related.

But having read through the document mostly, not completely, I simply stopped reading further due to incorrect usage of words and many bad spellings, some of which would not be caught by a spell checker – “table” for “stable” for example.

The best method is to use a trusted vendor. They interact with the cell providers and are the best way to confirm whether cells are fake or not. It can be incredibly difficult to tell whether a cell is fake or not just by picking it up from the table. There are some giveaways like different printing on the wrapper, slightly different color, different stamp, different weight or different shell design, but all of those can be mimicked. That’s why I use only a handful of vendors that I’ve worked with continuously and who I know have always given me good quality cells. I had to go through some low quality ones until I found the sources I buy from now.

You’ll see two dots where the weld was performed. Test the weld by pulling on the nickel strip (if it’s your first time using the welder). If it doesn’t come off with hand pressure, or requires a lot of strength, then it’s a good weld. If you can easily peel it off, turn the current up. If the surface looks burnt or is overly hot to the touch, turn the current down. It helps to have a spare cell or two for dialing in the power of your machine.

When soldering these wires to the nickel strip, try to solder between two cells and not directly on top of a cell. This keeps the heat source further from the actual cell ends and causes less heating of the battery cells.

Where things can get a bit dicey is in charging batteries that are parallel connected. If you leave the batteries in parallel while charging, then the charger current will get shared between the batteries and you can be sure that they are always at the http://usebikeparts.com charge level. However, that does mean one of the batteries will be getting charged through the discharge port, and depending on the specific BMS circuit it may not have overcharge protection on the discharge wires.

Once I’ve got all the cells I need checked out and ensured they have matching voltages, I like to arrange them on my work surface in the orientation of the intended pack. This gives me one final check to make sure the orientation will work as planned, and a chance to see the real-life size of the pack, minus a little bit of padding and heat shrink wrap.

Now take your trip distance, multiply it by the appropriate watt-hours/km from the table above, and you’ll get the total minimum watt-hours required for the trip. Take the watt-hours you’ve estimated and divide it by the voltage, and you now have an estimate on the minimum amp-hours you’ll need from the pack.

Capacity: 30Ah. output: 71.4V 5A. Lifecycle of single cell: >85% capacity after 700 cycles, > 70% capacity after 800 cycles. (<1C discharge rate and <1C charge rate). Lifecycle: > 85% capacity after 5…

It is possible to do it that way, however there are some compelling reasons not to. 1) By first joining all the series cells you would end up with multiple high voltage groups, which means both the chance and consequences of an accident are greater. When you’re working with lots of exposed batteries with nickel conductors and metal tools flying around, the last thing you want is more high voltage possibilities for shorts. 2) Doing series cells first would be come unwieldy, physically. A series group is only connected at either the top or bottom of alternating cells. Without having multiple cells side by side to add stability, a long chain of single cells will need either a pile of glue or some type of physical holder to support the chain. and 3) most battery spot welders can only reach about 2 cells deep into a pack, meaning you’d have to either add very short nickel strips to each series group connecting only two groups (which means twice the welding and twice the cell damaging heat) or have long uncontrolled nickel strips hanging off the sides, again risking shorting.