“scooters battery _48 volt lithium bicycle battery”

To wire the BMS, we first need to determine which of the sense wires (the many thin wires) is the first one (destined for the first parallel group). Look for the wires to be numbered on one side the board. Mine is on the backside of the board and I forgot to take a picture of it before installing it, but trust me that I took note of which end the sense wires start on. You don’t want to make a mistake and connect the sense wires starting in the wrong direction.

18650 cells, which are used in many different consumer electronics from laptops to power tools, are one of the most common battery cells employed in electric bicycle battery packs. For many years there were only mediocre 18650 cells available, but the demand by power tool makers and even some electric vehicle manufacturers for strong, high quality cells has led to the development of a number of great 18650 options in the last few years.

Here at Grin we’ve been dealing with ebike batteries for a very long time during which we’ve offered over 100 variants of NiCad, NiMH, LiFePO4, LiPo, and Lithium-Ion packs in all kinds of voltages, geometries, and capacities. It’s been a love/hate relationship over those years, but the more recent mass production of 18650 lithium cells for high power consumer goods like power tools has shifted things to the love side, with ebike batteries that are cheaper, lighter, and with far longer life span than we could have ever wished for in the past. We’re happy to stock both frame mount and rear rack mounted batteries from 98 watt-hours to 1100 watt-hours in size to suite the needs of most electric bicycle conversions. 

Now the game plan here is to weld parallel groups of 3 cells (or more or less for your pack depending on how much total capacity you want). To weld the cells in parallel, we’ll need to weld the tops and the bottoms of the cells together so all 3 cells share common positive and negative terminals.

The battery maximum power = volts x amps, so if this 36V battery can deliver 30A continuous, that means it can deliver a maximum of 1,080 watts, though I would run it conservatively at a lower power level than that in most applications.

Good question. The answer comes down to the difference between “nominal voltage” and “actual voltage”. LiFePO4 cells are nominally called 3.2V cells, because this is their voltage in the middle of their discharge curve, at about 50% discharge. They actually charger to a higher voltage though, about 3.7V per cell. That means that you need a charger that has an output voltage of 3.7V x 6 cells = 22.2V DC. This is going to be a bit harder to find because most LiFePO4 packs come in multiples of 4 cells, (4, 8, 12, 16 cells, etc) so finding a charger for a 6S pack might take some searching. This charger is a good quality one meant for 8 cells (output voltage of 29.2V DC) but if you put a note in the purchase order, the seller can adjust the output for 6 LiFePO4 cells (22.2V DC). http://www.aliexpress.com/store/product/aluminum-shell-24V-29-2V-3Amper-Lifepo4-battery-charger-high-quality-charger-for-8S-lifepo4-battery/1680408_32274890691.html

This pattern continues until we’ve got all 10 parallel groups connected. In my case, you can see that the first and last parallel groups aren’t welded on the top side of the pack. That is because they are the “ends” of the pack, or the main positive and negative terminals of the entire 36V pack.

These cells are distinctive due to their cylindrical shape and are about the size of a finger. Depending on the size of the battery you plan to build, you’ll need anywhere from a few dozen to a few hundred of them.

Another excellent answer, thanks so much! Now it has arisen a few related questions, if you don’t mind answering them. I’m using authentic Samsung ICR18650-26FM cells. I had already purchased a 24V 15A BMS before I slightly understood all of this. I was also able to obtain more cells since my original idea, so I was planning a 7S10P pack (around 30Ah), 70 cells total. I see each cell can do around 5A, making a 10P pack put out 50A total. If I stick with my 24V 15A BMS, that will give me 15A * 24V watts, or 360 watts total for my 500 watt motor. I’m going to number these to make it easier:

Yep, that explains it. I was going to say that it sounds either like a defective BMS or more likely a connection error. B1 is definitely the negative end. Also some BMS units have B1- and B1+, others just have B1+. If it has both, it will have X+1 sense wires, where X is the number of series cells in the pack.

I think it is much better to use a purpose built CV-CC (constant voltage, constant current) ebike charger. I 100% understand the desire to complete the project on the cheap, but I think that sometimes it is worth a few extra bucks as insurance to protect your battery which is worth many hundreds of dollars.

LiPo packs that are homebuilt (without a BMS) can be extremely dangerous if you do not approach your battery with a lot of knowledge and care. Be sure to research extensively before building such a pack. Many E-bikers construct packs with no BMS using Turnigy/Zippy packs, acquired cheaply online through the Hobby King company which is based in China.  For those who risk running their batteries without BMS they still use sophisticated chargers to balance their packs and constantly monitor the health of their cells.

Most people find that once they have an ebike, they use it for all kinds of applications and trips outide of just commuting, and the ability to go 50+ km on a charge opens up possibilities that wouldn’t have been possible otherwise. Plus, as the battery ages and declines in capacity, it still has more than enough range for your key commuting needs. Imagine if instead of getting an 8Ah pack, you purchased a 15Ah battery. Even if after 4-5 years it has lost 30% of its original capacity, that’s still over 10Ah and leaves plenty of reserve for your 24km commute.

I finished an ebike yesterday, but i found some major problems on it, The problem is while i riding the bike by throttling, some times the display light dims and low battery voltage caution icon is displaying in the display. and than display shutting off. after that if i try to turn it on again it wont work, so i removed the battery from controller and installed it again than works perfectly, it happens always so i want to remove and install battery again and again, so what is this problem, is this problem is in battery or controller?? Please give me a solution.

If you are using 2.5AH cells then yes, it will be 5AH with a 2p configuration. If you use cells with higher capacity, like Sanyo GA cells that are 3.5AH, then you’ll have a 7AH pack with only 2p. Make sure your cells can handle the current that your electric scooter (and namely the controller) will try to draw from it.

Either way works, but my orange jig saves me one hot glue step which just makes for a cleaner looking pack. Of course it’s all the same after the pack gets covered with shrink wrap, so you can use any method you’d like. I’ve even found that some of those cylindrical ice cube trays are perfectly sized to hold 18650 cells. Cutting off the top would leave it clear for welding. I’d add some strong neodymium magnets to the backside to hold the cells in place like my orange jig has, but other than that it’s a perfect jig almost as-is.

I continued with all 10 sense wires, placing the last one on the positive terminal of the 10th parallel group. If you aren’t sure about which groups are which, or you get confused, use your digital voltmeter to double check the voltages of each group so you know you are connecting each wire to the correct group.

However… I’m thinking about extending the range of my 250W ebike (a Greenedge CS2) by wiring a battery in parallel as a one-off project. My thinking is that as it would halve the load on each of the batteries, it would reduce output current and voltage drop under load. This I’m thinking would allow use of a simpler constructions, since the stress on each cell would be reduced.

The most noteworthy battery supplier is based in the USA and is offering lithium packs based on high quality cells.  A new vendor in 2015 is Lunacycle.com , so…check them out for a multitude of different packs at a very reasonable price.

Actually, it is not recommended to use protected cells in ebike builds. There a few reasons but the main ones are 1) unreliability of the protection circuit, 2) many points of failure, and 3) lower discharge current of individual cell protection circuits.

Lithium Ion electric bike batteries are ideal for those that plan to ride longer distances and or more frequent trips. The commuters https://en.wikipedia.org/wiki/Electric_bikes battery, lithium batteries can stand two complete 100% discharges a day for years. Discharging the battery half way riding to work or school, then parking all day at half charge does no damage to a lithium electric bike battery. So the urgency to recharge immediately is not like SLA’s. Since discharging to 100% empty does not significantly harm lithium electric bike batteries, the usable range of the lithium electric bike battery is roughly double that of SLA’s. In typical electric bike use, Li-Ion batteries last from two to four years. Proper storage of Lithium Ion batteries is important when the electric bike will not be used for more than a few weeks. Unplug the battery from the electric bike, charge fully, and then store in a cool but not frozen, dry place.

I have found this BMS which is cheap (necessary for my project) and it is shipped from the UK. Because it is so cheap do you think that it may not be balancing? http://www.ebay.co.uk/itm/400984825723?euid=0502c7e2b2c744ec8857879d65d46e08&cp=1

20″ 250W 36V White Folding Electric Lithium Battery B ike. Motor: 36V 250W Rear Hub Motor. The 20” Sheep is a 36V 7AH Lithium Battery powered Electric Bicycle. This Folding Electric Bicycle is the per…

NO Memory Effect to reduce the capacity over time, longer life, more eco-friendly 1.5V / 1200MAH – Same as regular AA battery For toys, game controller, wireless mouse, wireless keyboard, remote and so on SAFE & ECO & NON TOXIC – Approved by FCC CE & RoHS, the 1200mAH AA lithium batteries are guaranteed

I placed the first parallel group positive side up, and the second parallel group negative side up. I laid the nickel strips on top of each of the three sets of cells, bridging the positive caps of the first parallel group with the negative terminal of the second parallel group, as shown in the picture.

Sizing a bike correctly is important for pedaling efficiency and safety. Fitting a bike involves many factors. However, the basic considerations before buying a bike include frame size, seat height, and…

0 Replies to ““scooters battery _48 volt lithium bicycle battery””

  1. You’ll also notice in the following pictures that my charge and discharge wires are taped off at the ends with electrical tape. This is to keep them from accidentally coming in contact with each other and short circuiting the pack. A friend of mine recently tipped me off to another (and probably better) option to prevent shorts: add your connectors to the wires first, then solder them onto the pack and BMS. Doh!
    A recent quote from ES member SamTexas on claimed max C-rates: “…I have in front of me Samsung’s own Nickel (Manganese) 18650 cells….I have tested these cells at 3C continuous and they do deliver full capacity at that rate. Push it to 5C and they become hot and capacity is greatly reduced…“
    When we add the fourth parallel group, we’ll again hot glue it in place in the opposite orientation of the third parallel group (and the same orientation of the second parallel group) and then weld it on the opposite side as we welded between the second and third group (and the same side as we welded between the first and second group).
    13. Winners will be emailed directly by the marketing manager. Must respond within a week. Winner may also be announced on Facebook.               14. Sponsor: The Sponsor of the Sweepstakes is Electric Bike Technologies LLC, 951 River Road, Croydon, PA, United States;

Leave a Reply

Your email address will not be published. Required fields are marked *