“replacement battery for electric scooter +electric bike battery”

A recent quote from ES member SamTexas on claimed max C-rates: “…I have in front of me Samsung’s own Nickel (Manganese) 18650 cells….I have tested these cells at 3C continuous and they do deliver full capacity at that rate. Push it to 5C and they become hot and capacity is greatly reduced…“

One question regarding the specific battery BMS you used in this build: It uses a different wire for charging vs discharging the battery. Does this mean that the regenerative braking feature cannot be used for this battery?

All the help and knowledge I’ve provided here on EbikeSchool.com is 100% free, and I try to assist readers as much as possible in the comments section of each article. If you want to support this site and help me keep it free (and ad free), consider checking out my ebook and video course on building ebikes.

I purchased the 220v welder, which obviously was intended to run on non-US half of a phase 220v, Of course we have full single phase 220v, so could you supply me with a hint on how to wire the unit for US 220 v.

Next, plan out your cell configuration on your computer or even with a pencil and paper. This will help ensure you are laying out your pack correctly and show you the final dimensions of the pack. In my top-down drawing below I’ve designated the positive end of the cells in red and the negative end of the cells in white.

That’s exactly correct. You’d start by welding 10 parallel groups of 4 cells each, then you’d connect those 10 parallel groups in series to make one rectangular battery. I’ve done many 10s4p packs just like that for 36V 10ah ebike batteries.

You can certainly use a second 4.4AH battery in parallel to double your range, but you’ll want to make sure the batteries are at the same state of charge when you connect them in parallel, or use a diode in between them, to keep one battery from discharging the other if the charge states are unequal.

I am planning on making a 6S2P LifePO4 pack that has a voltage of 19.2V. I have a 6 cell BMS that does balancing (and that is intended to work with 6 LifePO4 cells). I need some help selecting a charger to charge this pack, however, particularly regarding the charger’s voltage specification.

But having read through the document mostly, not completely, I simply stopped reading further due to incorrect usage of words and many bad spellings, some of which would not be caught by a spell checker – “table” for “stable” for example.

Lastly, regarding the spot welder. I actually prefer to use the kind like you said, with the two arms that lift up and provide equal pressure at each weld. The kind with two long welding cables like this welder has both options which is nice, especially for if you need to reach to the middle of a pack to make a repair or if you missed a weld. I mostly use the short rigid arms though and just weld one row at a time before adding more cells – that way I can reach all the cells with the short arms.

“The secret of NMC lies in combining nickel and manganese. An analogy of this is table salt, in which the main ingredients of sodium and chloride are toxic on their own but mixing them serves as seasoning salt and food preserver. Nickel is known for its high specific energy but low stability; manganese has the benefit of forming a spinel structure to achieve very low internal resistance batteries for motor scooters offers a low specific energy.

Nickel Metal Hydride batteries are about 20% lighter and 30% less voluminous than a NiCd pack of the same capacity. They have similar discharge and charge characteristics, but because of the higher energy density they are available in higher capacities than NiCd packs. Because NiMH is safe for disposal in the landfill while Nickle Cadmium is not, the metal hydride has almost completely replaced cadmium in most consumer batteries.

I would advise against connecting one battery to the other’s charging port. That charging port, as you correctly stated, is wired to a charging circuit on the BMS which is usually meant to take 5A max, sometimes less, whereas the discharging side of the BMS usually puts out at least 15A, sometimes much more. You can easily fry your BMS by connecting a second battery to its charge port.

Your battery pack size is based on voltage and amp-hours. The higher the voltage and the higher the amp hours of your battery, the more range your battery will give you. A 48V 10-Ah pack gives you 480 watt hour (48 X 10). This gives you an easy way to determine exactly how much battery you are buying. The wattage of a battery is the only accurate determinant to judge what range your finished ebike will have.

When it comes to the nickel strip you’ll be using to connect the 18650 batteries together, you will have two options: nickel-plated steel strips and pure nickel strips. Go for the pure nickel. It costs a little bit more than nickel plated steel but it has much lower resistance. That will translate into less wasted heat, more range from your battery, and a longer useful battery lifetime due to less heat damage to the cells.

Leave a Reply

Your email address will not be published. Required fields are marked *