“lithium battery electric bike |electric bike build”

You’ll notice that for my charge wires I used larger diameter wires than the sense wires that came with the BMS. That’s because charging will deliver more current than those sense wires will. Also, you’ll notice the discharge wires (including the B- pad to the negative terminal of the pack) are the thickest wires of all of them, as these will carry the entire power of the whole pack during discharging. I used 16 awg for the charge wires and 12 awg for the discharge wires.

10. Limitation of Liability: By entering you agree to release and hold harmless Electric Bike Technologies LLC and its subsidiaries, affiliates, advertising and promotion agencies, partners, representatives, agents, successors, assigns, employees, officers and directors from any liability, illness, injury, death, loss, litigation, claim or damage that may occur, directly or indirectly, whether caused by negligence or not, from (i) such entrant’s participation in the sweepstakes and/or his/her acceptance, possession, use, or misuse of any prize or any portion thereof, (ii) technical failures of any kind, including but not limited to the malfunctioning of any computer, cable, network, hardware or software; (iii) the unavailability or inaccessibility of any transmissions or telephone or Internet service; (iv) unauthorized human intervention in any part of the entry process or the Promotion; (v) electronic or human error which may occur in the administration of the Promotion or the processing of entries.

Nickel Cadmium was the old standard for rechargeable consumer cells in the familiar AA, C, 9V series. They are known for robust characteristics, a good cycle life, and high discharge capabilities. They are still widely used in cordless power tools, R/C toys and similar applications that demand large currents, but for nearly everything else NiCad’s have been replaced by NiMH and Lithiums.

Nominal capacity: 12Ah (Fully charged after 0.5C discharge to 38V capacity). Cycle life: Standard charge and fast discharge cycle 500 times, the capacity will notless than 60% of the nominal capacity.

For a complete write up on LiFePO4 care and trouble shooting read our story here. LiFePO4 cells nominal voltage is generally from 3.0-to 3.2 volts, and generally, lifepo4 is a heavier and less power dense than available LiPo batteries and is not capable of as high of amperage discharge.

As far as dimensions, I prefer to use 0.1 or 0.15 mm thick nickel, and usually use a 7 or 8 mm wide strip. A stronger welder can do thicker strip, but will cost a lot more. If your welder can do 0.15 mm nickel strip then go for it; thicker is always better. If you have thinner strips then that’s fine too, just lay down a couple layers on top of each other when necessary to create connections that can carry more current.

First thing is regarding the cells – I have just order some Panasonic 18650PF like yours by chance (I was looking for Samsung). The delivered cells were made and charged in 2014, and the measured voltage now is around 3V (+/- 0.1v). So the voltage is basically the same for all of them but there are old, I think, even thaw never used and stored in a warehouse.

After writing my question, I did more research on these cells regarding overcharging and over-discharging and I see where you’re coming from regarding not having connections between the parallel cell blocks to smooth out differences between individual cells. So as a permanent installation, it’s not going to work. However, I’ve had another thought, which I’ve put at the final paragraph.

Lastly, there’s a small chance that it’s just a faulty BMS. This method is annoying, but if all else fails then you can try swapping out the BMS. More than likely though, the BMS is doing it’s job because one of the cutoff conditions is fulfilled and it’s just trying to protect the pack.

Sealed Lead Acid (SLA) remains the most affordable entry-level battery option. However, their life-cycle is so short, it is more cost-effective to pay twice as much to get a lithium-based battery that will last 6-times longer.

Love your youtube videos! I’m actually looking to make an electric longboard on the cheap. I have an 18V motor (from a battery drill) that I want to power and I have purchased 10 (AA) 3.6V 3000mAH Lithium-ion batteries with the intention of connecting them together in a series arrangement to run the motor. What would be the best way to arrange them? And is there a need for a BMS for a smaller arrangement? Or would it be more time effective/safer to just charge each battery individually? Any help is appreciated.

For example, suppose you see a 24V 4Ah NiMH battery pack on ebay, that is rated for 1C continuous and 2C max for short times. You might want to get two of these to make a 48V 4Ah battery for your ebike. You calculate that the range will be more than adequate for your short commute to work and back. The problem is that 1C is just 4 amps, while your ebike will probably draw 10-20 amps. If these cells are subject to such discharge rates, then the voltage will sag considerably, leading to slower performance, and the cycle life of the packs will be greatly reduced.

I hope not to have to replace the whole battery pack and wondering if it can be salvaged by replacing the just the dead cells and burnt connectors, or do you think the damage is too extensive to be worth repairing it?

And a final point is that a larger battery has a lower per cell stress during discharge, since the current is shared among more parallel cells. Cells that are cycled at high discharge curents (>1-2C) also exhibit lower cycle life than those cycled at low currents

Regarding your first question: as long as your BMS has a balancing function (most do) then you do NOT need a charger that does balancing, and in fact you should not use one. The BMS takes care of all the balancing, so all you need is a simple ebike charger. What is important though is that it is a CC-CV (constant current, constant voltage) charger. Most ebike chargers are, but just check to make sure it says that somewhere in the description, or ask the vendor if you can’t find it. The CC-CV part means that the charger will supply a constant current first, bringing the battery voltage up slowly until it reaches the full voltage (54.6V for your 13S battery). Then it switches to CV mode and holds a constant voltage while it gradually backs the current down to zero, which is the ‘finishing’ part of the charge.

I wouldn’t say incompatible but us 220 uses the full phase peak to peak of both legs of the elec drop. European and others uses a half phase (I believe) where zero to peak is 220v. Have you had a chance to look into this for me as my welder and box of new 18650’s are sitting idle waiting for me to start welding. Thanks

You’ll also want to test out the battery with a fairly light load in the beginning. Try to go for an easy ride on the first few charges, or even better, use a discharger if you have one. I built a custom discharger out of halogen light bulbs. It allows me to fully discharge my batteries at different power levels and measure the output. This specific battery gave 8.54 Ah on its first discharge cycle at a discharge rate of 0.5c, or about 4.4 A. That result is actually pretty good, and equates to an individual average cell capacity of about 2.85 Ah, or 98% of the rated capacity.

Electric Bike Technologies LLC has the right, in its sole discretion, to maintain the integrity of the Sweepstakes, to void votes for any reason, including, but not limited to; multiple entries from the same user from different IP addresses; multiple entries from the same computer in excess of that allowed by sweepstakes rules; or the use of bots, macros or scripts or other technical means for entering. Any attempt by an entrant to deliberately damage any web site or undermine http://electricbikeframes.com legitimate operation of the sweepstakes may be a violation of criminal and civil laws and should such an attempt be made, Electric Bike Technologies LLC reserves the right to seek damages from any such person to the fullest extent permitted by law.

Select items that are not included in ShippingPass will ship for free but with value shipping. Look for items sold by Walmart.com and marked with FREE shipping. You will also see this noted in checkout.

Something that’s worthy of note, is that “AllCell” is using a block of graphite/wax composite Phase-Change-Material (PCM) using a patented formula. If a single cell suddenly starts running hot, the heat is instantly spread out across the PCM block, which would prevent a thermal runaway event. According to a recent press-release:

These lists, updated hourly, contain bestselling items. Here you can discover the best Adult Electric Bicycles in Amazon Best Sellers, and find the top 100 most popular Amazon Adult Electric Bicycles.

One of the main disadvantages of lead acid batteries is their weight. There’s no beating around the bush here, SLAs are HEAVY, as you might guess by the inclusion of “lead” in the name. You’ll need a strong mounting solution on your ebike to handle the extra weight of SLAs. You should also be aware that lugging that extra weight around is going to negatively impact your range. The best way to improve the range of any electric vehicle is to reduce weight, and SLAs are kind of going the opposite way in that regard.

THE SPOT WELDING IS ALREADY DONE! I KNOW ALL YOU “DO-IT-YOURSELF” E-BIKE AND POWERWALL BUILDERS OUT THERE ARE LOOKING FOR AFFORDABLE 18650 CELLS. I KNOW THESE AREN’T THE HIGHEST CAPACITY CELLS (1300MA…

The watts (power) the battery can provide is totally dependent on the type of cells and the BMS rating. So until I know more about your cells, I can’t help you. But for an example, imagine you used cells that were rated at 5A each. 7p x 5A = 35A total power capacity. 35A * 24V = 840 watts, the total amount of power your battery can handle. But now let’s assume you used a 20A BMS, meaning the BMS can only handle 20A continuously. That’s your limiting factor, so your new total battery maximum power is 20A * 24V = 480 watts. Now just substitute the actual current rating of your cells and BMS to solve for your battery’s power capacity.

i have the exact same BMS but i only have 6 cells, 2p x s3 , i have 2x 3.7v @ 2000 mah batteries in parallel connected to another 2 parallel batteries in series and another parallel pack in series if that makes sense to make a total of 11.1 v @ 12mah for a small project.

A123 is a brand name of lithium ion phosphate battery used in many EV even full car applications.. A123 cells are known to be of high quality and capable of having high-amp discharge rates with long life expectancy of over 1000 charges. They can provide large amounts of power and have been used in racing applications as well as electric car builds. Chrysler has chosen to use A123 cells in their electric cars.

We sell roughly equal numbers of 36V and 48V battery packs, and all of our conversion kits and controllers work fine with both 36V and 48V (or 52V) battery options. Just because 48V is a larger number, it does not mean that a 48V ebike is intrinsically better / more powerful / faster than a 36V ebike despite what the ill-informed internet will lead you to believe. However, it is true that a given motor will spin faster at a higher voltage, and usually higher speeds will correspond to more power consumption. For most of the stock hub motor kits that we offer, a 36V battery will result in a commuting speed of 30-35 kph, while wth a 48V battery will result in closer to 40-45 kph.

Why does this formula work? Think about it: heat shrink (unless stated otherwise) usually has a 2:1 shrink ratio, so if I need something with less than twice the circumference (or perimeter rather, since my pack isn’t really a circle) of my pack. Since large diameter heat shrink is quoted in half circumference (flat width) sizes, and I want heat shrink with a circumference of a bit more than the perimeter of my pack, then I know I need the half circumference size to be a bit more than half of my pack’s perimeter, which is equal to the height plus the width of my pack.

The SLA electric bike battery is a reliable power source for electric bikes that are used for shorter trips. The best lifespan for an SLA battery is obtained by keeping it fully charged as much as possible, and discharging it only to half its actual capacity. It’s an affordable electric bike battery, ideal for round trips of 5 to 8 miles, when it can be recharged right away. In typical electric bike use, SLA electric bike batteries last about a year, but longer life is possible if the use is very light, and the battery is kept fully charged at all times.

Your product will be shipped to its final destination to arrive in 2 business days or faster. If your order is placed before the 11 a.m. PST cutoff time, then it will ship that day and arrive 2 business days later. If your order is placed after the 11 a.m. PST cutoff time, we will do our best to process it the same day but may need an extra day.

Small hard-cased A123 cells (about the size of a “C” battery) have been salvaged out of power drill packs, car battery packs etc, and have made it into the hands of e-bike DIYers who solder them together in series and in parallel to construct a pack big enough and powerful enough to power an e-bike.

Hey Brian, good question. You can actually do regenerative braking this way, the only problem is that you won’t be using the balancing circuit part of the BMS as it will charge straight back through the discharge circuit. Theoretically this is fine, with the exception of one specific case where this could be a problem. If you charged your battery at the top of a huge hill and then immediately rolled down that hill for a long time while using regenerative braking, you could actually overcharge the battery. That scenario is pretty rare though.

When it comes to choosing a BMS, the number of cells you have in parallel aren’t important. Only the number of series cells matters. The same BMS will work with 1 or 100 cells in parallel, as the voltage stays the same regardless of the number of parallel cells.

The high C-rate is not the only reason LiPo is adored by the high performance crowd, the addition of Cobalt to the cathode meant that more power would fit in a smaller package. This was driven by the boom in Radio-Controlled (RC) models in the late 1990’s (RC airplanes, cars, helicopters, etc). When that market suddenly expanded, an Australian enthusiast started a company to supply RC parts from factories in China. Hobby King.com was born. Last year, due to popular demand, HK has opened warehouses in The USA and in Germany (edit: even more countries have HK warehouses now).

One Reply to ““lithium battery electric bike |electric bike build””

  1. You’ll also want to test out the battery with a fairly light load in the beginning. Try to go for an easy ride on the first few charges, or even better, use a discharger if you have one. I built a custom discharger out of halogen light bulbs. It allows me to fully discharge my batteries at different power levels and measure the output. This specific battery gave 8.54 Ah on its first discharge cycle at a discharge rate of 0.5c, or about 4.4 A. That result is actually pretty good, and equates to an individual average cell capacity of about 2.85 Ah, or 98% of the rated capacity.
    Many retailers suggest charging the battery at least once a month if the bike is not ridden much, and say that the more the bike is ridden, the stronger the battery will be. All batteries, though, will deteriorate in time and they will need to be replaced and disposed. When that time comes, it’s best to ask your local retailer how to dispose of the battery, but bear in mind that local authorities should provide recycling and disposal facilities.
    I’ve been reading a bit about how Batterybro.com makes sure to test there batteries are genuine, and how it seems they still get a lot of fake batteries from China. When you buy on Aliexpress.com how to you know and make sure the batteries you buy are genuine? there’s a lot of sellers how did you find yours?
    The main limitation of those holders is power – they can’t handle it. For a few amps, they might be fine, but ebikes require dozens of amps, which would surely melt those guys. Think about it this way: professional ebike batteries have big hunks of nickel plate welded between cells. The tiny little spring contacts of those holders will never compare to that kind of current carrying ability.
    I want to take the apart and use the cells to make a 48V 16.8ah battery. Would you advice against this? Would 48V provide a noticeable difference in the power of my motor? (It is a 500W Falco Direct Drive Hub Motor)

Leave a Reply

Your email address will not be published. Required fields are marked *