“electric moped battery _electric car batteries”

You’re absolutely right that doubling the capacity of the battery by running two packs in parallel will essential halve the load on each pack, but I still don’t think it would get it down to the level that you could rely on compression fit spring contacts to safely carry that current, let alone the balance issue of not having the 4 groups individually paralleled at the cell level.

You’ll also notice in the following pictures that my charge and discharge wires are taped off at the ends with electrical tape. This is to keep them from accidentally coming in contact with each other and short circuiting the pack. A friend of mine recently tipped me off to another (and probably better) option to prevent shorts: add your connectors to the wires first, then solder them onto the pack and BMS. Doh!

Typically you can expect somewhere between 25 and 70 miles of travel on a single charge of an ebike. If you’re riding hard on full power expect less; manage your battery life well and you could get more.

The Panasonic NCR18650PD cells can be purchased at Fast Tech dot Com, who reliably processed and shipped my transaction. Good prices, too, from this Chinese-based vendor. I “tested the waters” by buying just 4 cells first and will certainly be buying more from them. I’d like to make my own e-bike pack with these cells and further inquired to AllCell to see if I could obtain one of their PCM blocks. Unfortunately, they will only sell these on bulk wholesale basis to established pack-building businesses. The DIY pack builder will have to explore other options.

I would advise against connecting one battery to the other’s charging port. That charging port, as you correctly stated, is wired to a charging circuit on the BMS which is usually meant to take 5A max, sometimes less, whereas the discharging side of the BMS usually puts out at least 15A, sometimes much more. You can easily fry your BMS by connecting a second battery to its charge port.

I’m mostly kidding, but if you use cells that are rated for more current than you’re trying to pull from them, you’ll create a lot less waste heat and both options will be perfectly fine and healthy for the battery.

In the rush to upgrade from lead acid to the latest NiMH and lithium packs, it seems that most companies forgot about the old venerable Nickel Cadmium battery as a suitable option for ebikes. Although they are somewhat heavier than the NiMH and lithium options, they are still a substantial weight savings over lead. NiCd packs have had a solid and proven track record in demanding rechargeable battery applications.

I would not recommend trying to use a 36V charger. The voltage will be way too high and damage either the charger, battery, BMS or all three. Always use a charger that is matched to your pack’s actual charge voltage, which in your case is 22.2V DC.

36V 10ah Lithium battery (Included with the battery is the charger and mounting Bracket). Standard 26 in Front Wheel 500w brushless motor hub (works with V-brake or disc brakes). Pedal Assistance syst…

i noticed that bms installation is different (as i guess) from the video (https://www.youtube.com/watch?v=rSv9bke52eY&index=10&list=LLDXj2cy8mbQoc0dz3RO3zFw) i have watched before. In this video bms wires were connected on the negative poles of batteries lifepo4. In my amateur opinion i could not understand how we organize BMS connections for my 13s pack. if you illuminate me, i will be preciated.

When it comes to lead acid batteries for ebike use, you’ll generally be looking for what’s called a “sealed lead acid” or SLA battery. SLAs come sealed in a hard plastic case and can be turned in any orientation safely without leaking acid. This makes them appropriate for ebike use. Wet cell lead acid batteries, like many car batteries, would leak dangerous acid if turned on their side or upside down, making them a bad idea for use on an electric bicycle, which is a lot more likely to get knocked over than a car. Remember to stick with SLAs – not wet cell lead acid batteries – for electric bicycle use.

One of the easiest ways to increase the current handling capability and range is to put two or more batteries in parallel. In general, with lithium batteries of the same nominal voltage, this is no problem. It is perfectly fine to mix old and new lithium batteries in parallel, or even batteries from different manufacturers and with different capacities, so long as they are the same voltage. We stock a parallel battery joining cable to facilitate connecting packs this way. 

Something that’s worthy of note, is that “AllCell” is using a block of graphite/wax composite Phase-Change-Material (PCM) using a patented formula. If a single cell suddenly starts running hot, the heat is instantly spread out across the PCM block, which would prevent a thermal runaway event. According to a recent press-release:

Now I’ve got all of my pack sealed in heat shrink with my wires exiting the seam between the two layers of shrink wrap. I could have stopped here, but I didn’t particularly like the way the shrink fell on the wire exit there, from a purely aesthetic standpoint. So I actually took a third piece of shrink wrap, the same size (285 mm) as that first piece and went around the long axis of the pack one more time to pull the wires down tight to the end of the pack.

1. The extra http://electricbikebatterys.com that the battery could output isn’t wasted, it’s just sort of a safety factor. It means you aren’t stressing the battery to its limit. Also, batteries only get their full rated capacity at lower discharged. So you’re more likely to get the full capacity now than if you actually pulled 50A out of it.

I’m not sure what cells exactly you’ve got there, but a good replacement cell (assuming it has similar specs to your cells, which you’ll have to confirm) could be the Samsung 26F cell. It’s a good quality economical battery cell. I’ve gotten them from here and had great experiences with the vendor: Samsung 26F 18650 lithium battery cells

I KNOW ALL YOU “DO-IT-YOURSELF” E-BIKE AND POWERWALL BUILDERS OUT THERE ARE LOOKING FOR AFFORDABLE AND HIGH QUALITY 18650 CELLS. HIGH DRAIN MEANING THESE ARE RATED FOR 10A CONTINUOUS AND 20A MAX PER C…

22f cells are quite low capacity and not very strong. They will work for an ebike (and are about the cheapest good quality cells out there) but they aren’t optimal. You’ll end up with a larger and heavier pack as compared to more energy dense cells like Panasonic 18650pf or Sanyo 18650ga cells.

Do you by any chance have some spare parts you can swap in? A spare controller would you let you know if the controller is faulty and tripping early. Another battery would show you if the problem was battery related.

Alibaba.com offers 176,519 electric bike battery products. About 29% of these are electric bicycle, 22% are rechargeable batteries, and 8% are electric bicycle battery. A wide variety of electric bike battery options are available to you, such as 36v, 24v, and 48v. You can also choose from lithium battery, lead acid battery. As well as from 10 – 20ah, 21 – 30ah, and > 40ah. And whether electric bike battery is paid samples, or free samples. There are 176,478 electric bike battery suppliers, mainly located in Asia. The top supplying countries are China (Mainland), Taiwan, and Vietnam, which supply 99%, 1%, and 1% of electric bike battery respectively. Electric bike battery products are most popular in North America, Western Europe, and Northern Europe. You can ensure product safety by selecting from certified suppliers, including 39,164 with ISO9001, 14,565 with Other, and 6,300 with ISO/TS16949 certification.

48 volt 1500 watt motor 48 volt 16.5 amp Samsun cell high quality battery 2amp charger, charges in 6 hours plus battery has USB port to charge your phone Top speed 35mph high torque Comes with every t…

0 Replies to ““electric moped battery _electric car batteries””

  1. To calculate the max amps the battery can deliver, you have to know the max amps of the cells you used. For example, Panasonic 18650pf cells can deliver 10A continuous, and I used 3 cells in series in this battery, so the battery can deliver 3 x 10A = 30A. However, you also need to know how much current the BMS can deliver. If I put a 15A continous BMS on this pack then that would be the “weakest link” so to speak, meaning the pack with the BMS could only deliver 15A continuous.
    One of the easiest ways to increase the current handling capability and range is to put two or more batteries in parallel. In general, with lithium batteries of the same nominal voltage, this is no problem. It is perfectly fine to mix old and new lithium batteries in parallel, or even batteries from different manufacturers and with different capacities, so long as they are the same voltage. We stock a parallel battery joining cable to facilitate connecting packs this way. 
    Lay your nickel strip on top of the three cells, ensuring that it covers all three terminals. Turn your welder on and adjust the current to a fairly low setting (if it’s your first time using the welder). Perform a test weld by placing the battery cells and copper strip below the probes and lifting up until the welding arms raise high enough to initiate the weld.

Leave a Reply

Your email address will not be published. Required fields are marked *