“e-bike battery +battery pack for electric bike”

2. Agreement to Rules: By participating, you agree to be fully unconditionally bound by these Rules, and you represent and warrant that you meet the eligibility requirements set forth herein. In addition, you agree to accept the decisions of Electric Bike Technologies LLC, as final and binding as it relates to the content. The Sweepstakes is subject to all applicable federal, state and local laws.

Great article! Have ordered everything BUT i have a big problem with the spotwelder. Most homes in europe are limited to 10A and this spotwelder alone drags 15A just to powerupp!!!! I can even start it without blowing both fuses! And when welding it wants 50A-800A which you need a an actual POWERPLANT for!

I placed the first parallel group positive side up, and the second parallel group negative side up. I laid the nickel strips on top of each of the three sets of cells, bridging the positive caps of the first parallel group with the negative terminal of the second parallel group, as shown in the picture.

http://www.aliexpress.com/item/SUNKKO-709A-1500W-welding-machine-small-battery-spot-Welder-with-welding-pen-for-18650-pack-welding/32384498157.html?spm=2114.01020208.3.132.T8tjqL&ws_ab_test=searchweb201556_0,searchweb201602_1_10037_10033_507_10032_10020_10017_10021_10022_10009_10008_10018_101_10019,searchweb201603_1&btsid=06a7c525-fb11-425d-8614-730ff4b43d7e

I should really change that $2 cutoff to more like $2.50, which is more reasonable for quality cells. Basically, the cheapest ‘good’ cells are Samsung 26F cells, which can be had for usually around $2.50 – $2.90 if you are buying in any large quantity, like at least 100. Expect to pay more like $3.00 or so if you’re buying only 40 cells. 26F cells are also limited to 5A discharge though, so you’ve got the same issue as with the NCR18650B cells from Panasonic.

When it comes to the nickel strip you’ll be using to connect the 18650 batteries together, you will have two options: nickel-plated steel strips and pure nickel strips. Go for the pure nickel. It costs a little bit more than nickel plated steel but it has much lower resistance. That will translate into less wasted heat, more range from your battery, and a longer useful battery lifetime due to less heat damage to the cells.

18650 cells, which are used in many different consumer electronics from laptops to power tools, are one of the most common battery cells employed in electric bicycle battery packs. For many years there were only mediocre 18650 cells available, but the demand by power tool makers and even some electric vehicle manufacturers for strong, high quality cells has led to the development of a number of great 18650 options in the last few years.

You’ll also want to test out the battery with a fairly light load in the beginning. Try to go for an easy ride on the first few charges, or even better, use a discharger if you have one. I built a custom discharger out of halogen light bulbs. It allows me to fully discharge my batteries at different power levels and measure the output. This specific battery gave 8.54 Ah on its first discharge cycle at a discharge rate of 0.5c, or about 4.4 A. That result is actually pretty good, and equates to an individual average cell capacity of about 2.85 Ah, or 98% of the rated capacity.

A cell that provides close to a “real world” 2.8-Ah per 18650 cell is pretty impressive, and the 3C current-producing capability is perfect for E-bikes (a 15-Ah pack can provide a continuous 45A, and our favorite power level of 30A can be provided by a very small 10-Ah pack). If you know of anyone who builds a pack out of these, please contact us, as we are very keen to discover whatever strengths or weaknesses they may have. If you are shopping to buy these, make certain you get these specific part numbers, batteries for electric scooters replacement part numbers will only have half the C-rate.

It was an interesting project to say the least, particularly how to link the Ch- and the P- from the BMS taking its B- from the 7s negative termination to the positive of the 6s group, given that there are two routes (i.e. charging and discharging), so connecting both simultaneously would override the function of the BMS.

Regarding you question, if I understand you correctly, it seems that your 18650 lithium battery will be smaller than the old NiCad battery, so you have extra room in the battery box that needs to be filled, correct? My recommendation is to use some type of fairly rigid foam to fill the space. It adds almost no weight and it also helps cushion the battery pack.

Alternately, you can separate the batteries and charge each with its own charger, but then you have some small risk of reconnected the batteries when one is charged and the other is flat, if for some reason one of the batteries didn’t get charged up properly. We usually recommend leaving the packs parallel connected at all times.

There are many different types of lithium ebike batteries to choose from. I’ll give a short summary of the different types of electric bicycle specific lithium batteries here, but you can get a more detailed description as well as the pros and cons of each type of lithium battery in my article Not All Lithium Batteries Were Created Equal.

I am working on a similar project, and was wondering if the BMS’s that you recommended would handle any back EMF from the motor (from regenerative braking, for example.) I see that there are separate leads for charging and discharging, so I’m guessing if current flowed back through the discharge circuit that would be bad. Do you have any recommendations on a BMS (or something different) that would handle this condition?

Assuming the original battery is a li-ion battery and has the same number of cells in series (same voltage), then yes it should charge it. However, looking at the picture of the battery in that listing, I can tell you that is not a picture a 24V 25AH battery. That picture has 6 cells, and a 24V 25AH battery will have something more like 56 cells. That picture looks like a 22V 3AH battery. It could be that they simply used the wrong picture in the listing, though I doubt it as that would be an insanely good price for that size of a battery. but I’d be wary of that offer either way.

If you are using 2.5AH cells then yes, it will be 5AH with a 2p configuration. If you use cells with higher capacity, like Sanyo GA cells that are 3.5AH, then you’ll have a 7AH pack with only 2p. Make sure your cells can handle the current that your electric scooter (and namely the controller) will try to draw from it.

As far as dimensions, I prefer to use 0.1 or 0.15 mm thick nickel, and usually use a 7 or 8 mm wide strip. A stronger welder can do thicker strip, but will cost a lot more. If your welder can do 0.15 mm nickel strip then go for it; thicker is always better. If you have thinner strips then that’s fine too, just lay down a couple layers on top of each other when necessary to create connections that can carry more current.

LiFePO4-Lithium Iron Phosphate. This was the first lithium chemistry that really took off for use in cordless drills and laptop computers. Mass production brought the prices down, and E-bikers began buying cordless drill packs and gutting them for the cylindrical cells, so they could be re-configured from the stock 18V up to 48V (or more). The common low C-rate was around 1C, so builders began making packs for high voltage to get better performance without stressing the pack by trying to pull high amps. LiFePO4 requires a sophisticated Battery-Management-System (BMS) to stay healthy.

While there are a lot of chemical combinations that can and have been made into useful batteries, in practice there are only four rechargeable types readily available in sizes suitable for ebikes. These are Lead Acid (PbA), Nickel Metal Hydride (NiMH), Nickel Cadmium (NiCad), and Lithium-ion or Lithium Polymer.

Leave a Reply

Your email address will not be published. Required fields are marked *