“48 volt lithium bicycle battery build an electric bike”

Another excellent answer, thanks so much! Now it has arisen a few related questions, if you don’t mind answering them. I’m using authentic Samsung ICR18650-26FM cells. I had already purchased a 24V 15A BMS before I slightly understood all of this. I was also able to obtain more cells since my original idea, so I was planning a 7S10P pack (around 30Ah), 70 cells total. I see each cell can do around 5A, making a 10P pack put out 50A total. If I stick with my 24V 15A BMS, that will give me 15A * 24V watts, or 360 watts total for my 500 watt motor. I’m going to number these to make it easier:

I need to build a 56-60v battery that I will be using to convert a bike with 20″ moped rims and a 48v 1500w 46.5 kmh — 28.8mph 13 * 5T winding rotor hub motor. I’m looking more for range than speed (mostly flat where I live), although I would like to top 30mph. If my math is right, in order to accomplish this I need to build a pattern that is 16s6-8p. Which 18650 cells should I choose? I’m also not sure which BMS I should use? And then which controller is best for this battery and motor setup? I’ll post the links to the parts I’m currently sourcing and let me know if you think there is a better set up or parts. Thank you

The spacers you linked to make battery building a bit easier as you can set it up modularly, but as you indicated, they add a good amount of volume to the battery. I like to make my batteries as small as possible so I rarely use them. When I do, I use these ones, but it’s not very often.

Power ratings of E-bike kits and the C-rates of batteries for sale are ALL highly suspect. The endless-sphere authority on batteries and their C-rates is Doctor Bass. He has nothing to gain from misrepresenting any chemistry or battery manufacturer. I must admit I am annoyed if a new battery is claimed to be a 5C chemistry, but testing shows it to survive better at 3C, however…a misrepresented battery that is a true 3C is still a good thing.

We like to use Anderson Powerpole connectors as the standard discharge plug on all of our ebike battery packs. These connectors are ingenious since they are genderless, allowing you to use the same plug both on both a load and a source, and the connector design allows them to withstand the arc of inrush current when plugged into capacitive loads much better than bullet style plugs. For the charging port, we like to use the female 3-pin XLR plug standard. This is directly compatible with the Satiator charger, and the quality Neutrik XLR plugs are rated for a full 15 amps per pin allowing very rapid charging. Unfortunately, this option is not available for the smaller Hailong frame batteries and we are forced to use the lower current DC 5.5mm barrel plug instead.

Do you have any charts showing the different weights by voltage for lead acid vs lithium? It would be good info to be able to see the penalty paid for cheap lead acid in a mid level build when compared to the equivalent lithium setup.

Be aware the NCA chemistry can be had in a low-amp and high amp version. By having a single 3100-mAh cell inside the cylinder, the internal volume is maximized (good for laptops and cordless drills by providing the absolute longest run-time). But…by putting a couple of cell-divisions inside that same cylinder with a parallel connection, the internal volume is reduced to 2900-mAh, but the amp producing ability is doubled, with the NCA chemistry being advertised as capable of 10A per cell, which is roughly a C-rate of a continuous 3C.

Two things to keep in mind: 1) make sure you use a thick enough wire between the series-wired modules, especially if you are going a long distance. The longer the wire, the more resistance there will be so compensate with a thick wire. 14 or 12 awg silicone wire would be great. And 2) you need to also make sure you’ve got thick enough wire for the balance wires from the BMS (since you’ll of course need to run all the small BMS wires to the modules as well). Ensure those solder joints are strong, as they’ll be on long and flexing wires with increased chance for damage or breaking at the joints. Those are normally tiny wires but if they are going to be extra long then something like 20 awg should be fine.

i noticed that bms installation batteries electric scooter different (as i guess) from the video (https://www.youtube.com/watch?v=rSv9bke52eY&index=10&list=LLDXj2cy8mbQoc0dz3RO3zFw) i have watched before. In this video bms wires were connected on the negative poles of batteries lifepo4. In my amateur opinion i could not understand how we organize BMS connections for my 13s pack. if you illuminate me, i will be preciated.

The higher C-rate of 3C for the newer LiFePO4 (from A123) keeps these popular so you don’t need a huge pack to get fairly adequate amps. To get a continuous 24A, you’d only need a 8-Ah battery. Fairly affordable, and small enough to fit in a bike frame.

One of the first advantages of lithium batteries is their small size. You can fit a lot of lithium on a bicycle frame. This alone can give your ebike some seriously impressive range. Two or three mid to large capacity lithium batteries could easily fit on one ebike, giving potential ranges of 100 miles (160 km) or more. I guess this would be great for people that don’t mind sitting on their bike for three to five hours at a time, or that for some reason don’t want to charge up for weeks (hey, when riding your ebike through a zombie apocalypse, the last thing you want to be doing is searching for an outlet).

I have built a few 13s lithium batteries in the past year following your instructions. Thanks. I have taken one of the batteries apart to check its condition as it is the middle of winter here in Winnipeg, Canada. Two parallel sets were out of balance with the rest of the pack. I was wondering if there is a way to use my imax b6 balance chargers to rewire the battery and keep each parallel pack in balance for sure! This way I will bypass the bms. Does this make sense?

Offset packing results in a shorter pack because the parallel groups are offset by half a cell, taking up part of the space between the cells of the previous parallel group. However, this results in a somewhat wider pack as the offset parallel groups extend to each side by a quarter of a cell more than they would have in linear packing. Offset packing is handy for times where you need to fit the pack into a shorter area (such as the frame triangle) and don’t care about the width penalty.

Rated Capacity: 10Ah. Recommended to be used with 36V 250W electric bicycle motor. 36V 750W 20″ Front Tire e-Bike. Charge Current: 2A. Model: Bottle Type. 1 Year manufacturer warranty for CHARGER. Use…

That might of sounded confusing, so let’s talk in real numbers. My pack is about 70 mm high and about 65 mm wide. That means that half of the perimeter of my pack is 70+ 65 = 135 mm. So I need some heat shrink tubing that has a flat width (or half circumference) of between 135 to 270 mm, or to be safer, more like between 150-250mm. And if possible, I want to be on the smaller end of that range so the heat shrink will be tighter and hold more firmly. Luckily, I have some 170mm heat shrink tube which will work great.

A recent quote from ES member SamTexas on claimed max C-rates: “…I have in front of me Samsung’s own Nickel (Manganese) 18650 cells….I have tested these cells at 3C continuous and they do deliver full capacity at that rate. Push it to 5C and they become hot and capacity is greatly reduced…“

The next consideration is ensuring that the battery is large enough for your required travel range; it’s no fun having a battery go flat before the end of your trip. In order to determine the range that you will get from a given battery, you need to know both the watt-hour capacity of the battery, and how much energy you use per kilometer. Sounds complicated? Not really. As a rule of thumb most people riding an ebike at average speeds consume about 10 Wh/km from their battery, and this makes the math very easy. If you have a 400 watt-hour battery, you can expect a range of 40km. A 720 watt-hour battery? ~72km

Another disadvantage of lead acid batteries is the shorter lifespan. Most claim to be rated for over 200 cycles, but in practice I usually find many SLAs start showing their age at around 100 cycles. They’ll still work as they get up in years (or charge cycles), but you’ll begin seeing your range quickly decreasing. If you were traveling 15 miles per charge when the SLAs were new, a year later you could find yourself barely getting past 10 miles.

You want to use unprotected cells because your BMS will be handling all the protection, and you don’t want individual cell protection circuits getting in the way or limiting current draw unnecessarily. So use only unprotected cells when building big multi-cell packs like these.

http://www.aliexpress.com/item/SUNKKO-709A-1500W-welding-machine-small-battery-spot-Welder-with-welding-pen-for-18650-pack-welding/32384498157.html?spm=2114.01020208.3.132.T8tjqL&ws_ab_test=searchweb201556_0,searchweb201602_1_10037_10033_507_10032_10020_10017_10021_10022_10009_10008_10018_101_10019,searchweb201603_1&btsid=06a7c525-fb11-425d-8614-730ff4b43d7e

So let say main point to count the power is to count the power is to know what type of the controller i have (i have check my batt connection goes to PCB which has sensors it self and whole unicycle controller… ) how to know ? Or in primitive way i can count like my batt is 20A and 36W so max power can be 720W but its peak on continues?

192 watt-hours is about the smallest battery size you would want for an ebike. Many of the store-bought ebikes have about this much capacity since it keeps the battery cost down. For people who want to actually commute reasonable distances of 40-50km, then I would recommend on the order of 400 watt-hours. While it can vary a lot with usage habits, an energy consumption of 9-10 watt-hrs / km is typical on normal direct-drive setups.

There are different models of welders out there but most of them work in a similar way. You should have two copper electrodes spaced a few millimeters apart on two arms, or you might have handheld probes. My machine has welding arms.

If any one battery cell varies significantly from the others, do NOT connect it to the other cells. Paralleling two or more cells of different voltages will cause an instantaneous and massive current flow in the direction of the lower voltage cell(s). This can damage the cells and even result in fire on rare occasions. Either individually charge or discharge the cell to match the others, or more likely, just don’t use it in your pack at all. The reason for the voltage difference could have something to do with an issue in the cell, and you don’t want a bad cell in your pack.

As long as you monitor your pack voltage so you don’t go too low during rides, then yes that would work. You’d simply run your discharge negative wire straight from the -1 terminal of your battery out to your controller, instead of from your -1 terminal to your BMS’s B- pad. But that removes the ability for the BMS to cut off the current when the voltage goes too low, so you’ve got to watch for that.

I should really change that $2 cutoff to more like $2.50, which is more reasonable for quality cells. Basically, the cheapest ‘good’ cells are Samsung 26F cells, which can be had for usually around $2.50 – $2.90 if you are buying in any large quantity, like at least 100. Expect to pay more like $3.00 or so if you’re buying only 40 cells. 26F cells are also limited to 5A discharge though, so you’ve got the same issue as with the NCR18650B cells from Panasonic.

Leave a Reply

Your email address will not be published. Required fields are marked *