“48 volt lithium bicycle battery build an electric bike”

Another excellent answer, thanks so much! Now it has arisen a few related questions, if you don’t mind answering them. I’m using authentic Samsung ICR18650-26FM cells. I had already purchased a 24V 15A BMS before I slightly understood all of this. I was also able to obtain more cells since my original idea, so I was planning a 7S10P pack (around 30Ah), 70 cells total. I see each cell can do around 5A, making a 10P pack put out 50A total. If I stick with my 24V 15A BMS, that will give me 15A * 24V watts, or 360 watts total for my 500 watt motor. I’m going to number these to make it easier:

I need to build a 56-60v battery that I will be using to convert a bike with 20″ moped rims and a 48v 1500w 46.5 kmh — 28.8mph 13 * 5T winding rotor hub motor. I’m looking more for range than speed (mostly flat where I live), although I would like to top 30mph. If my math is right, in order to accomplish this I need to build a pattern that is 16s6-8p. Which 18650 cells should I choose? I’m also not sure which BMS I should use? And then which controller is best for this battery and motor setup? I’ll post the links to the parts I’m currently sourcing and let me know if you think there is a better set up or parts. Thank you

The spacers you linked to make battery building a bit easier as you can set it up modularly, but as you indicated, they add a good amount of volume to the battery. I like to make my batteries as small as possible so I rarely use them. When I do, I use these ones, but it’s not very often.

Power ratings of E-bike kits and the C-rates of batteries for sale are ALL highly suspect. The endless-sphere authority on batteries and their C-rates is Doctor Bass. He has nothing to gain from misrepresenting any chemistry or battery manufacturer. I must admit I am annoyed if a new battery is claimed to be a 5C chemistry, but testing shows it to survive better at 3C, however…a misrepresented battery that is a true 3C is still a good thing.

We like to use Anderson Powerpole connectors as the standard discharge plug on all of our ebike battery packs. These connectors are ingenious since they are genderless, allowing you to use the same plug both on both a load and a source, and the connector design allows them to withstand the arc of inrush current when plugged into capacitive loads much better than bullet style plugs. For the charging port, we like to use the female 3-pin XLR plug standard. This is directly compatible with the Satiator charger, and the quality Neutrik XLR plugs are rated for a full 15 amps per pin allowing very rapid charging. Unfortunately, this option is not available for the smaller Hailong frame batteries and we are forced to use the lower current DC 5.5mm barrel plug instead.

Do you have any charts showing the different weights by voltage for lead acid vs lithium? It would be good info to be able to see the penalty paid for cheap lead acid in a mid level build when compared to the equivalent lithium setup.

Be aware the NCA chemistry can be had in a low-amp and high amp version. By having a single 3100-mAh cell inside the cylinder, the internal volume is maximized (good for laptops and cordless drills by providing the absolute longest run-time). But…by putting a couple of cell-divisions inside that same cylinder with a parallel connection, the internal volume is reduced to 2900-mAh, but the amp producing ability is doubled, with the NCA chemistry being advertised as capable of 10A per cell, which is roughly a C-rate of a continuous 3C.

Two things to keep in mind: 1) make sure you use a thick enough wire between the series-wired modules, especially if you are going a long distance. The longer the wire, the more resistance there will be so compensate with a thick wire. 14 or 12 awg silicone wire would be great. And 2) you need to also make sure you’ve got thick enough wire for the balance wires from the BMS (since you’ll of course need to run all the small BMS wires to the modules as well). Ensure those solder joints are strong, as they’ll be on long and flexing wires with increased chance for damage or breaking at the joints. Those are normally tiny wires but if they are going to be extra long then something like 20 awg should be fine.

i noticed that bms installation batteries electric scooter different (as i guess) from the video (https://www.youtube.com/watch?v=rSv9bke52eY&index=10&list=LLDXj2cy8mbQoc0dz3RO3zFw) i have watched before. In this video bms wires were connected on the negative poles of batteries lifepo4. In my amateur opinion i could not understand how we organize BMS connections for my 13s pack. if you illuminate me, i will be preciated.

The higher C-rate of 3C for the newer LiFePO4 (from A123) keeps these popular so you don’t need a huge pack to get fairly adequate amps. To get a continuous 24A, you’d only need a 8-Ah battery. Fairly affordable, and small enough to fit in a bike frame.

One of the first advantages of lithium batteries is their small size. You can fit a lot of lithium on a bicycle frame. This alone can give your ebike some seriously impressive range. Two or three mid to large capacity lithium batteries could easily fit on one ebike, giving potential ranges of 100 miles (160 km) or more. I guess this would be great for people that don’t mind sitting on their bike for three to five hours at a time, or that for some reason don’t want to charge up for weeks (hey, when riding your ebike through a zombie apocalypse, the last thing you want to be doing is searching for an outlet).

I have built a few 13s lithium batteries in the past year following your instructions. Thanks. I have taken one of the batteries apart to check its condition as it is the middle of winter here in Winnipeg, Canada. Two parallel sets were out of balance with the rest of the pack. I was wondering if there is a way to use my imax b6 balance chargers to rewire the battery and keep each parallel pack in balance for sure! This way I will bypass the bms. Does this make sense?

Offset packing results in a shorter pack because the parallel groups are offset by half a cell, taking up part of the space between the cells of the previous parallel group. However, this results in a somewhat wider pack as the offset parallel groups extend to each side by a quarter of a cell more than they would have in linear packing. Offset packing is handy for times where you need to fit the pack into a shorter area (such as the frame triangle) and don’t care about the width penalty.

Rated Capacity: 10Ah. Recommended to be used with 36V 250W electric bicycle motor. 36V 750W 20″ Front Tire e-Bike. Charge Current: 2A. Model: Bottle Type. 1 Year manufacturer warranty for CHARGER. Use…

That might of sounded confusing, so let’s talk in real numbers. My pack is about 70 mm high and about 65 mm wide. That means that half of the perimeter of my pack is 70+ 65 = 135 mm. So I need some heat shrink tubing that has a flat width (or half circumference) of between 135 to 270 mm, or to be safer, more like between 150-250mm. And if possible, I want to be on the smaller end of that range so the heat shrink will be tighter and hold more firmly. Luckily, I have some 170mm heat shrink tube which will work great.

A recent quote from ES member SamTexas on claimed max C-rates: “…I have in front of me Samsung’s own Nickel (Manganese) 18650 cells….I have tested these cells at 3C continuous and they do deliver full capacity at that rate. Push it to 5C and they become hot and capacity is greatly reduced…“

The next consideration is ensuring that the battery is large enough for your required travel range; it’s no fun having a battery go flat before the end of your trip. In order to determine the range that you will get from a given battery, you need to know both the watt-hour capacity of the battery, and how much energy you use per kilometer. Sounds complicated? Not really. As a rule of thumb most people riding an ebike at average speeds consume about 10 Wh/km from their battery, and this makes the math very easy. If you have a 400 watt-hour battery, you can expect a range of 40km. A 720 watt-hour battery? ~72km

Another disadvantage of lead acid batteries is the shorter lifespan. Most claim to be rated for over 200 cycles, but in practice I usually find many SLAs start showing their age at around 100 cycles. They’ll still work as they get up in years (or charge cycles), but you’ll begin seeing your range quickly decreasing. If you were traveling 15 miles per charge when the SLAs were new, a year later you could find yourself barely getting past 10 miles.

You want to use unprotected cells because your BMS will be handling all the protection, and you don’t want individual cell protection circuits getting in the way or limiting current draw unnecessarily. So use only unprotected cells when building big multi-cell packs like these.

http://www.aliexpress.com/item/SUNKKO-709A-1500W-welding-machine-small-battery-spot-Welder-with-welding-pen-for-18650-pack-welding/32384498157.html?spm=2114.01020208.3.132.T8tjqL&ws_ab_test=searchweb201556_0,searchweb201602_1_10037_10033_507_10032_10020_10017_10021_10022_10009_10008_10018_101_10019,searchweb201603_1&btsid=06a7c525-fb11-425d-8614-730ff4b43d7e

So let say main point to count the power is to count the power is to know what type of the controller i have (i have check my batt connection goes to PCB which has sensors it self and whole unicycle controller… ) how to know ? Or in primitive way i can count like my batt is 20A and 36W so max power can be 720W but its peak on continues?

192 watt-hours is about the smallest battery size you would want for an ebike. Many of the store-bought ebikes have about this much capacity since it keeps the battery cost down. For people who want to actually commute reasonable distances of 40-50km, then I would recommend on the order of 400 watt-hours. While it can vary a lot with usage habits, an energy consumption of 9-10 watt-hrs / km is typical on normal direct-drive setups.

There are different models of welders out there but most of them work in a similar way. You should have two copper electrodes spaced a few millimeters apart on two arms, or you might have handheld probes. My machine has welding arms.

If any one battery cell varies significantly from the others, do NOT connect it to the other cells. Paralleling two or more cells of different voltages will cause an instantaneous and massive current flow in the direction of the lower voltage cell(s). This can damage the cells and even result in fire on rare occasions. Either individually charge or discharge the cell to match the others, or more likely, just don’t use it in your pack at all. The reason for the voltage difference could have something to do with an issue in the cell, and you don’t want a bad cell in your pack.

As long as you monitor your pack voltage so you don’t go too low during rides, then yes that would work. You’d simply run your discharge negative wire straight from the -1 terminal of your battery out to your controller, instead of from your -1 terminal to your BMS’s B- pad. But that removes the ability for the BMS to cut off the current when the voltage goes too low, so you’ve got to watch for that.

I should really change that $2 cutoff to more like $2.50, which is more reasonable for quality cells. Basically, the cheapest ‘good’ cells are Samsung 26F cells, which can be had for usually around $2.50 – $2.90 if you are buying in any large quantity, like at least 100. Expect to pay more like $3.00 or so if you’re buying only 40 cells. 26F cells are also limited to 5A discharge though, so you’ve got the same issue as with the NCR18650B cells from Panasonic.

“electric bike build 48 volt lithium bicycle battery”

Nissan, Imara, Microvast, and Zero E-motorcycles are now using NMC after extensive testing. Let’s take a quick run down memory lane to show how battery chemistry has evolved in just a few short decades. The following is not the order of their invention, just what my foggy memory recalls as seeing them used in E-bike battery packs.

I’m glad you enjoyed the article. To answer your questions: I chose this type of battery instead of LiFePO4 mostly because of the cost and convenience. LiFePO4 is a bit more expensive and has fewer options for cells. These Li-ion cells are a bit less expensive and there are dozens of options with many different specifications for any power/capacity need. I’ve used and built LiFePO4 packs before and they have their own unique advantages, but for me they just don’t add up to enough.

Nickel Metal Hydride is quite similar to Nickel Cadmium, but with a higher energy density and a safer environmental record when disposed of in landfills. This is the dominant rechargeable battery type in digital cameras and other consumer products that offer user replaceable cells.

Thank for the great article. I made battery packs already, do you have any recommendations on chargers. I have a 53 volt pack 30 amp hr. I don’t know what charger to buy, and I’m worried as lithium batteries tend to blow up if not handled correctly.

When you wire in series you only increase voltage, not amp hours. So you’d have a 48V 5AH pack in that setup. Not enough range, in my opinion. If you want my advice, the single best upgrade you can do to that bike is to replace the battery and controller for 48V units. It will give you about 30% more speed and power. You won’t need to drill vent holes or anything, that motor can handle 48V as long as you aren’t riding up any 5 mile long uphills with a 250 lb rider. Shorter uphills and flat land will be fine all day long.

http://www.aliexpress.com/item/SUNKKO-709A-1500W-welding-machine-small-battery-spot-Welder-with-welding-pen-for-18650-pack-welding/32384498157.html?spm=2114.01020208.3.132.T8tjqL&ws_ab_test=searchweb201556_0,searchweb201602_1_10037_10033_507_10032_10020_10017_10021_10022_10009_10008_10018_101_10019,searchweb201603_1&btsid=06a7c525-fb11-425d-8614-730ff4b43d7e

One more thing to note about large diameter heat shrink: unless otherwise stated, this stuff usually shrinks about 10% in the long direction, so you’ll want to add a bit extra to the length to account for both overlap and longitudinal shrinkage.

Should the voltage on the charger be exact, or can it be *higher* than my battery pack? For example, I need to charge a 19.2V pack. Does my charger have to *exactly match* (or come as close to as possible to) this 19.2V, or can I use a higher voltage charger, (say, 36V)? Will the charger automatically adjust to a lower voltage, allowing a 36V charger to charge my 19.2V pack?

That’s a good option. You’ll notice about a 30% increase in power, as well as a 30% increase in speed. Your motor can certainly handle it, the batteries for e bikes is if your controller can. Make sure it’s rated for 48V or you’ll need to swap in a different controller.

Charge current depends on the cells. Most cells can take at least 500mA, some considerably more. It’s hard to know what cells you’re using. Assuming they are 18650pf Panasonic cells like I used here, 1A per cell would be fine, giving you a charge rate of 3A. They can actually take more than that, but there’s no reason to push them too hard if you don’t have to.

One of the main disadvantages of lead acid batteries is their weight. There’s no beating around the bush here, SLAs are HEAVY, as you might guess by the inclusion of “lead” in the name. You’ll need a strong mounting solution on your ebike to handle the extra weight of SLAs. You should also be aware that lugging that extra weight around is going to negatively impact your range. The best way to improve the range of any electric vehicle is to reduce weight, and SLAs are kind of going the opposite way in that regard.

“bike batteries |scooter with battery”

Lead acid batteries are much larger and heavier than lithium batteries, limiting their placement on ebikes. They almost never come packaged with ebike specific mounting hardware which means that they generally have to go in a bag on the rear rack or in panniers on either side if the rear wheel. Mounting them up high on the rack isn’t a good idea either because it will negatively affect handling. Generally speaking, you want to mount your batteries as low as possible to keep the center of gravity of the ebike lower towards the ground. This will significantly improve your ebike’s handling.

Rechargeable Electric Bicycle Batteries 48V 20AH Lithium Ion Battery. These are 18650 cell based batteries (similar 18650 type cells are used in the Tesla car). Use it for ebike, scooter etrikes. Batt…

I’m deeply uncomfortable with recommending RC LiPo from the likes of Turnigy for people who don’t know what they’re doing. The above 3 options are plug and play and require no special skills. And they’re essentially safe when bulk charged with the associated charger.

Almost all consumer electronics that have a plug-in charger these days are powered with lithium batteries because they can store about 3 times more energy than NiMH. Small devices like cell phones, mp3 players, and other gadgets typically have lithium-polymer packs, as these can be formed in conveniently shaped thin rectangular pouches. Larger devices like laptops and the new lithium cordless power tools generally use cylindrical Lithium-ion cells of a size smaller than a ‘C’ but bigger than a ‘AA’. These are spot welded in series/parallel combination to give an appropriate voltage and capacity for the job.

Also, since the negative electrode is the entire bottom and sides of the cell (formed by a metal cylinder) these cells can take some bouncing around. Be aware if you scratch the plastic wrap on the cylinder, the metal shell underneath is energized to the negative electrode, so…an electrical short may be possible.

and i also have another question if i charge the 2 packs seperately then connect them to my bike in parallel do they both have to have the same capacity and the same wear for instance i currently have 2 sets of batteries (sla’s) one of which is an old set at half original capacity or there abouts and the new ones hold the full charge so can they be connected together to give me 1 1/2 x my range? or if im going to put a double pack on do i have to use and charge them together so theyre all at the same state of charge and wear the same as ideally i would like to only have to carry a second pack when i require the extra range.

Note that in batteries electrical article it says that LiFePo is the most commonly used chemistry. I think that depends on where you are looking. I suspect that LiNiCoMn or the older LiMn is actually most common in terms of total unit cells because they’re the cheapest and get used in the low end E-Bike market in China.

Yes, I’ve seen this problem. Homes that have only a 10A circuit breaker are often not enough for these welders. The room I wanted to use mine in had a 10A, so I switched it for a 20A breaker at the breaker box and now it works fine.

I would advise against connecting one battery to the other’s charging port. That charging port, as you correctly stated, is wired to a charging circuit on the BMS which is usually meant to take 5A max, sometimes less, whereas the discharging side of the BMS usually puts out at least 15A, sometimes much more. You can easily fry your BMS by connecting a second battery to its charge port.

Electric Bike Technologies LLC has the right, in its sole discretion, to maintain the integrity of the Sweepstakes, to void votes for any reason, including, but not limited to; multiple entries from the same user from different IP addresses; multiple entries from the same computer in excess of that allowed by sweepstakes rules; or the use of bots, macros or scripts or other technical means for entering. Any attempt by an entrant to deliberately damage any web site or undermine the legitimate operation of the sweepstakes may be a violation of criminal and civil laws and should such an attempt be made, Electric Bike Technologies LLC reserves the right to seek damages from any such person to the fullest extent permitted by law.

aliexpress: http://www.aliexpress.com/item/e-bike-battery-24-volt-lithium-battery-pack-25Ah-for-backup/32446161781.html?spm=2114.031010208.3.9.x1znRh&ws_ab_test=searchweb201556_6,searchweb201644_3_79_78_77_82_80_62_81,searchweb201560_1

I have an unrelated problem. I am prototyping a 1/3 scale model of a top fuel funny car.It’s 5 ft long, 2ft wide, wt. is approx. 100lbs.. I need to go 120 mph in under 4 seconds in 333 feet. Will the 5405 mtr. suffice? I know your going to ask alot of tech. questions but thats all I have for now.Any help in this quest for speed is greatly apprecated. Thank you robert lathrop

i am building a 10s4p 36v 18650 battery pack for my ebike, what gauge silicon wire you recommend for discharge and charge wires, i am using 2.5 amp 42.5v li-ion battery charger bought from ebay(http://www.ebay.com/itm/281639749374?_trksid=p2057872.m2749.l2649&ssPageName=STRK%3AMEBIDX%3AIT), and 10s 36v 30amp bms bought from ebay(http://www.ebay.com/itm/182247900118?_trksid=p2057872.m2749.l2649&ssPageName=STRK%3AMEBIDX%3AIT) and 500w 36v controller.

But what if you didn’t have to compromise? What if you could build your own ebike battery to your exact specifications? What if you could build a battery the perfect size for your bike, with all of the features you want, and do it for cheaper than retail? It’s easier than you think, and I’ll show you how below.

36V 10ah Lithium battery (Included with the battery is the charger and mounting Bracket). Standard 26 in by 4in Front Wheel 500w brushless motor hub ( disc brakes). Pedal Assistance system included ( …

To determine how much power you need, you’ll need to determine the voltage you want and the capacity you need to supply that power (voltage times current). Read this article to learn more about calculating your ebike’s power: http://www.ebikeschool.com/myth-ebike-wattage/

Thanks for the kind words! Unfortunately I don’t have access to a schematic. I got that BMS from a Chinese reseller and I would be surprised if even he has a schematic. I have seen people parallel BMS boards on a single pack to get higher current output but I haven’t tried that myself.

I finally made it happen on BMS #3 (the unfortunate thing about AliExpress is that every dumb mistake that kills a part is another month added to the project) and the battery seems to work great, though it only has a couple miles so far.

Dang, I just realized what I did wrong. I had been thinking as I connected the sense lines it was arbitrary which end of the battery was B1 and which B13, but obviously it isn’t. B1 has to be the negative end and B13 has to be the positive end. Since I already cut the sense lines to length, I’ll need to put my replacement BMS on the opposite end of the pack.

Different batteries have different amperage capacities. Most cheap lithium batteries are not capable of putting out much amperage. If you have a 48 volt bike that performs well when using 25 amps, you are going to want a 48 volt battery that has close to a 20-Amp-hours or more.  If you want to eventually hot rod your ebike (read our hot rod hub motor primer here), you may want to  invest now in a high amperage battery. This will “future proof” your system by paying a little bit more now for the battery, but then you can program more performance from the controller in the future, if you want…

Nissan, Imara, Microvast, and Zero E-motorcycles are now using NMC after extensive testing. Let’s take a quick run down memory lane to show how battery chemistry has evolved in just a few short decades. The following is not the order of their invention, just what my foggy memory recalls as seeing them used in E-bike battery packs.

“48 volt lithium bicycle battery _battery pack for electric bike”

We like to use Anderson Powerpole connectors as the standard discharge plug on all of our ebike battery packs. These connectors are ingenious since they are genderless, allowing you to use the same plug both on both a load and a source, and the connector design allows them to withstand the arc of inrush current when plugged into capacitive loads much better than bullet style plugs. For the charging port, we like to use the female 3-pin XLR plug standard. This is directly compatible with the Satiator charger, and the quality Neutrik XLR plugs are rated for a full 15 amps per pin allowing very rapid charging. Unfortunately, this option is not available for the smaller Hailong frame batteries and we are forced to use the lower current DC 5.5mm barrel plug instead.

Where things can get a bit dicey is in charging batteries that are parallel connected. If you leave the batteries in parallel while charging, then the charger current will get shared between the batteries and you can be sure that they are always at the same charge level. However, that does mean one of the batteries will be getting charged through the discharge port, and depending on the specific BMS circuit it may not have overcharge protection on the discharge wires.

Secondly, what is your take on modular plastic battery spacers (e.g. http://www.ebay.co.uk/itm/50x-EV-Pack-Plastic-Heat-Holder-Bracket-Battery-Spacer-18650-Radiating-Shell-New/351681365193?_trksid=p2047675.c100005.m1851&_trkparms=aid%3D222007%26algo%3DSIC.MBE%26ao%3D1%26asc%3D36381%26meid%3Dfc487881e617412ba361731154a742b5%26pid%3D100005%26rk%3D5%26rkt%3D6%26sd%3D262123820960). Clearly this adds a significant volume penalty and a smaller weight / cost one, but if this is not an issue then how would you rate vs glueing? I can see the benefit of having a space between the cells to limit heat / electrical conductivity in the event of some kind of melt down, but any thoughts?

The next consideration is ensuring that the battery is large enough for your required travel range; it’s no fun having a battery go flat before the end of your trip. In order to determine the range that you will get from a given battery, you need to know both the watt-hour capacity of the battery, and how much energy you use per kilometer. Sounds complicated? Not really. As a rule of thumb most people riding an ebike at average speeds consume about 10 Wh/km from their battery, and this makes the math very easy. If you have a 400 watt-hour battery, you can expect a range of 40km. A 720 watt-hour battery? ~72km

For a 24V 7s pack, I’ve used this BMS a few times and been quite happy with it: http://www.aliexpress.com/item/7S-Li-ion-Lipo-Batteries-Protection-Board-BMS-System-24V-29-4V-20A-Continuous-Discharge-350W/32336397316.html

Having built a 13s4p battery to the best of my ability and hooked it up to my 48V 1000W ebike conversion kit…. the lights on the throttle turned on and the wheel spun! Initially I thought the project was a success but after mounting the battery and controller onto the bike and taking the bike for a test spin I ran into a major problem.

We’d also like to send you special offers and news just by email from other carefully selected companies we think you might like. Your personal details will not be shared with those companies – we send the emails and you can unsubscribe at any time. Please tick here if you are happy to receive these messages.

There is some research into 18650 packs that use pressure connectors like in a remote control but most results aren’t impressive yet. It’s difficult to get a good enough connection to batteries electric scooter high enough power for ebike applications. The ones that are close to working use custom designed enclosures. Don’t attempt to do it with off-the-shelf 18650 holders with spring contacts — you’ll melt them in no time.

When choosing a battery for your bike, not only is the weight important but the volume is also important. You want your pack as small as possible so its easy to stow and easy to hide. So therefore you should consider you battery’s volume, not just its weight. For sure you need to go with a lithium chemistry and not an old school heavy and large Sealed Lead Acid (SLA) or Nickel-Metal Hydride (NiMH) chemistry.

So after buying a 48v 20 Amp battery from Ebay (and knowing very little at that point), I realized it didn’t have a BMS and heard rumors that if i attached it direct to the controller, it would see it as a short (controller would be closed) and blow the controller.

Hailong makes some of the more refined of the generic battery enclosures from china. You’ll see them online everywhere, stuffed with whatever cells and BMS circuit appropriate to the market being addressed. They secure to the water bottle eyelets on the down tube of your bike frame, and the narrow height of this pack design allows it to fit even on smaller or hybrid frame geometries that wouldn’t normally fit a pack. We have the smaller Hailong-01 enclosure in 36V (10s 5p) and 52V (14s 4p) layouts suitable for 20-25A current setups, and the larger Hailong-03 enclsoure in 36V 23.5Ah (10s 7p) and 52V 16.5Ah(14s 5p) sizes for higher current and capacity. 

Connections are made with solid Nickel strips, spot welder to each cell. Each cell and each series is tested before assembly. The BMS will prevent over charging and will balance the cells after a full…

Thank you for the article! I am currently making a battery for an electronic skateboard, so I need the layout to be as thin as possible to allow ample room underneath the deck. Currently, I have 6 packs of 3 cells welded in parallel, and would eventually like to create a battery which is 9 cells long, 1 wide, and 2 high, for 18 in total (the two packs of nine would then be welded in series). I am wondering if I could be able to make 2 battery packs by welding 3 of my current 3 cell packs together in parallel to make a long, yet skinny pack, and then welding both packs of nine in series using the alternating system. Essentially, I would be creating a pack that would look like 3 of the ones you show above when making your first series connection. Let me know what you think, and thank you!

Please forward to every member of ur family of em3ev! Here it’s been a great ride! Tks guys for everything. I can do mtb again bcause of your kit. My lower back and my knee been injured badly and i got fibromyalgia so without ur help my bike …

Is it possible that the controller for this Rayos 600W (sorry thought it was 500W but it’s actually 600W) is inside the electric motor itself? I traced all wiring on the E bike but find no controller anywhere. Do you see anything majorly wrong with using a BMS to charge the cells but not discharge, as in sending the current from the battery directly to the controller / motor? I’ve been unable to find a BMS that can do 30A that isn’t very expensive. A side note, I was able to test amperage while riding and around 20A gets me 9 miles per hour, that is where my multimeter tops out! I’m 235 pounds. I’m guessing I need around 30A to get the 16 MPH I get now with the existing LiFePO4 battery pack.

I just found your article, and as if it were destiny, this is exactly what I am trying to do (build a battery pack with BMS, and charge with charger). I am new to this, however, and have a question or two…

By entering the Sweepstakes you agree to receive email newsletters periodically from Electric Bike Technologies LLC. You can opt-out of receiving this communication at any time by clicking the unsubscribe link in the newsletter.

Your method of using the tubes might work but I still worry about how much current you could safely pull out of those connections. You can definitely charge the way you described but trust me, charging 2 or 4 cells at a time gets VERY frustrating. You’ll be spending days, maybe a week, getting your battery all the way charged again.

“…The wax is micro-encapsulated within the graphite matrix. When the wax melts, there’s enough surface tension between the wax and a graphite matrix that it doesn’t leak out. You could heat the material up to 300° C (570F), and it will become soft enough for a thumbprint, but it will remain solid…”

NiCd-Nickel Cadmium. This chemistry was half the size per a given power compared to SLA. But it has a low C-rate (Current producing capability) so anyone who made a pack out of them was restricted to low amps. There were no large packs for sale. E-bikers had to purchase rechargeable flashlight batteries and solder together a pack of a higher voltage, for which an off-the-shelf charger could be found to charge it up. Because of the low price of SLA chargers, 36V and 48V NiCd systems were common. When the price of nickel went up and the price of Lithium came down, NiCd died a quick death. Not even cordless drills use these anymore.

That’s exactly correct. You’d start by welding 10 parallel groups of 4 cells each, then you’d connect those 10 parallel groups in series to make one rectangular battery. I’ve done many 10s4p packs just like that for 36V 10ah ebike batteries.

The spacers you linked to make battery building a bit easier as you can set it up modularly, but as you indicated, they add a good amount of volume to the battery. I like to make my batteries as small as possible so I rarely use them. When I do, I use these ones, but it’s not very often.

Different batteries have different amperage capacities. Most cheap lithium batteries are not capable of putting out much amperage. If you have a 48 volt bike that performs well when using 25 amps, you are going to want a 48 volt battery that has close to a 20-Amp-hours or more.  If you want to eventually hot rod your ebike (read our hot rod hub motor primer here), you may want to  invest now in a high amperage battery. This will “future proof” your system by paying a little bit more now for the battery, but then you can program more performance from the controller in the future, if you want…

Now I’ve got all of my pack sealed in heat shrink with my wires exiting the seam between the two layers of shrink wrap. I could have stopped here, but I didn’t particularly like the way the shrink fell on the wire exit there, from a purely aesthetic standpoint. So I actually took a third piece of shrink wrap, the same size (285 mm) as that first piece and went around the long axis of the pack one more time to pull the wires down tight to the end of the pack.

A very affordable 13S BMS that I like is this 30A version, though it can take a few weeks or even a month to arrive since it’s coming all the way from China. http://www.aliexpress.com/item/13-lithium-battery-protection-board-48v-lithium-battery-BMS-30A-continuous-60A-peak-discharge/1741121963.html

The purchase price is often a turnoff for many people, but in reality $200 for a good hobby-level spot welder isn’t bad. All together, the supplies for my first battery, including the cost of the tools like the spot welder, ending up costing me about the same as if I had bought a retail battery of equal performance. That meant that in the end I had a new battery and I considered all the tools as free. Since then I’ve used them to build countless more batteries and made some huge savings!

NO Memory Effect to reduce the capacity over time, longer life, more eco-friendly 1.5V / 1200MAH – Same as regular AA battery For toys, game controller, wireless mouse, wireless keyboard, remote and so on SAFE & ECO & NON TOXIC – Approved by FCC CE & RoHS, the 1200mAH AA lithium batteries are guaranteed

All the help and knowledge I’ve provided here on EbikeSchool.com is 100% free, and I try to assist readers as much as possible in the comments section of each article. If you want to support this site and help me keep it free (and ad free), consider checking out my ebook and video course on building ebikes.

“scooters battery _48 volt lithium bicycle battery”

To wire the BMS, we first need to determine which of the sense wires (the many thin wires) is the first one (destined for the first parallel group). Look for the wires to be numbered on one side the board. Mine is on the backside of the board and I forgot to take a picture of it before installing it, but trust me that I took note of which end the sense wires start on. You don’t want to make a mistake and connect the sense wires starting in the wrong direction.

18650 cells, which are used in many different consumer electronics from laptops to power tools, are one of the most common battery cells employed in electric bicycle battery packs. For many years there were only mediocre 18650 cells available, but the demand by power tool makers and even some electric vehicle manufacturers for strong, high quality cells has led to the development of a number of great 18650 options in the last few years.

Here at Grin we’ve been dealing with ebike batteries for a very long time during which we’ve offered over 100 variants of NiCad, NiMH, LiFePO4, LiPo, and Lithium-Ion packs in all kinds of voltages, geometries, and capacities. It’s been a love/hate relationship over those years, but the more recent mass production of 18650 lithium cells for high power consumer goods like power tools has shifted things to the love side, with ebike batteries that are cheaper, lighter, and with far longer life span than we could have ever wished for in the past. We’re happy to stock both frame mount and rear rack mounted batteries from 98 watt-hours to 1100 watt-hours in size to suite the needs of most electric bicycle conversions. 

Now the game plan here is to weld parallel groups of 3 cells (or more or less for your pack depending on how much total capacity you want). To weld the cells in parallel, we’ll need to weld the tops and the bottoms of the cells together so all 3 cells share common positive and negative terminals.

The battery maximum power = volts x amps, so if this 36V battery can deliver 30A continuous, that means it can deliver a maximum of 1,080 watts, though I would run it conservatively at a lower power level than that in most applications.

Good question. The answer comes down to the difference between “nominal voltage” and “actual voltage”. LiFePO4 cells are nominally called 3.2V cells, because this is their voltage in the middle of their discharge curve, at about 50% discharge. They actually charger to a higher voltage though, about 3.7V per cell. That means that you need a charger that has an output voltage of 3.7V x 6 cells = 22.2V DC. This is going to be a bit harder to find because most LiFePO4 packs come in multiples of 4 cells, (4, 8, 12, 16 cells, etc) so finding a charger for a 6S pack might take some searching. This charger is a good quality one meant for 8 cells (output voltage of 29.2V DC) but if you put a note in the purchase order, the seller can adjust the output for 6 LiFePO4 cells (22.2V DC). http://www.aliexpress.com/store/product/aluminum-shell-24V-29-2V-3Amper-Lifepo4-battery-charger-high-quality-charger-for-8S-lifepo4-battery/1680408_32274890691.html

This pattern continues until we’ve got all 10 parallel groups connected. In my case, you can see that the first and last parallel groups aren’t welded on the top side of the pack. That is because they are the “ends” of the pack, or the main positive and negative terminals of the entire 36V pack.

These cells are distinctive due to their cylindrical shape and are about the size of a finger. Depending on the size of the battery you plan to build, you’ll need anywhere from a few dozen to a few hundred of them.

Another excellent answer, thanks so much! Now it has arisen a few related questions, if you don’t mind answering them. I’m using authentic Samsung ICR18650-26FM cells. I had already purchased a 24V 15A BMS before I slightly understood all of this. I was also able to obtain more cells since my original idea, so I was planning a 7S10P pack (around 30Ah), 70 cells total. I see each cell can do around 5A, making a 10P pack put out 50A total. If I stick with my 24V 15A BMS, that will give me 15A * 24V watts, or 360 watts total for my 500 watt motor. I’m going to number these to make it easier:

Yep, that explains it. I was going to say that it sounds either like a defective BMS or more likely a connection error. B1 is definitely the negative end. Also some BMS units have B1- and B1+, others just have B1+. If it has both, it will have X+1 sense wires, where X is the number of series cells in the pack.

I think it is much better to use a purpose built CV-CC (constant voltage, constant current) ebike charger. I 100% understand the desire to complete the project on the cheap, but I think that sometimes it is worth a few extra bucks as insurance to protect your battery which is worth many hundreds of dollars.

LiPo packs that are homebuilt (without a BMS) can be extremely dangerous if you do not approach your battery with a lot of knowledge and care. Be sure to research extensively before building such a pack. Many E-bikers construct packs with no BMS using Turnigy/Zippy packs, acquired cheaply online through the Hobby King company which is based in China.  For those who risk running their batteries without BMS they still use sophisticated chargers to balance their packs and constantly monitor the health of their cells.

Most people find that once they have an ebike, they use it for all kinds of applications and trips outide of just commuting, and the ability to go 50+ km on a charge opens up possibilities that wouldn’t have been possible otherwise. Plus, as the battery ages and declines in capacity, it still has more than enough range for your key commuting needs. Imagine if instead of getting an 8Ah pack, you purchased a 15Ah battery. Even if after 4-5 years it has lost 30% of its original capacity, that’s still over 10Ah and leaves plenty of reserve for your 24km commute.

I finished an ebike yesterday, but i found some major problems on it, The problem is while i riding the bike by throttling, some times the display light dims and low battery voltage caution icon is displaying in the display. and than display shutting off. after that if i try to turn it on again it wont work, so i removed the battery from controller and installed it again than works perfectly, it happens always so i want to remove and install battery again and again, so what is this problem, is this problem is in battery or controller?? Please give me a solution.

If you are using 2.5AH cells then yes, it will be 5AH with a 2p configuration. If you use cells with higher capacity, like Sanyo GA cells that are 3.5AH, then you’ll have a 7AH pack with only 2p. Make sure your cells can handle the current that your electric scooter (and namely the controller) will try to draw from it.

Either way works, but my orange jig saves me one hot glue step which just makes for a cleaner looking pack. Of course it’s all the same after the pack gets covered with shrink wrap, so you can use any method you’d like. I’ve even found that some of those cylindrical ice cube trays are perfectly sized to hold 18650 cells. Cutting off the top would leave it clear for welding. I’d add some strong neodymium magnets to the backside to hold the cells in place like my orange jig has, but other than that it’s a perfect jig almost as-is.

I continued with all 10 sense wires, placing the last one on the positive terminal of the 10th parallel group. If you aren’t sure about which groups are which, or you get confused, use your digital voltmeter to double check the voltages of each group so you know you are connecting each wire to the correct group.

However… I’m thinking about extending the range of my 250W ebike (a Greenedge CS2) by wiring a battery in parallel as a one-off project. My thinking is that as it would halve the load on each of the batteries, it would reduce output current and voltage drop under load. This I’m thinking would allow use of a simpler constructions, since the stress on each cell would be reduced.

The most noteworthy battery supplier is based in the USA and is offering lithium packs based on high quality cells.  A new vendor in 2015 is Lunacycle.com , so…check them out for a multitude of different packs at a very reasonable price.

Actually, it is not recommended to use protected cells in ebike builds. There a few reasons but the main ones are 1) unreliability of the protection circuit, 2) many points of failure, and 3) lower discharge current of individual cell protection circuits.

Lithium Ion electric bike batteries are ideal for those that plan to ride longer distances and or more frequent trips. The commuters https://en.wikipedia.org/wiki/Electric_bikes battery, lithium batteries can stand two complete 100% discharges a day for years. Discharging the battery half way riding to work or school, then parking all day at half charge does no damage to a lithium electric bike battery. So the urgency to recharge immediately is not like SLA’s. Since discharging to 100% empty does not significantly harm lithium electric bike batteries, the usable range of the lithium electric bike battery is roughly double that of SLA’s. In typical electric bike use, Li-Ion batteries last from two to four years. Proper storage of Lithium Ion batteries is important when the electric bike will not be used for more than a few weeks. Unplug the battery from the electric bike, charge fully, and then store in a cool but not frozen, dry place.

I have found this BMS which is cheap (necessary for my project) and it is shipped from the UK. Because it is so cheap do you think that it may not be balancing? http://www.ebay.co.uk/itm/400984825723?euid=0502c7e2b2c744ec8857879d65d46e08&cp=1

20″ 250W 36V White Folding Electric Lithium Battery B ike. Motor: 36V 250W Rear Hub Motor. The 20” Sheep is a 36V 7AH Lithium Battery powered Electric Bicycle. This Folding Electric Bicycle is the per…

NO Memory Effect to reduce the capacity over time, longer life, more eco-friendly 1.5V / 1200MAH – Same as regular AA battery For toys, game controller, wireless mouse, wireless keyboard, remote and so on SAFE & ECO & NON TOXIC – Approved by FCC CE & RoHS, the 1200mAH AA lithium batteries are guaranteed

I placed the first parallel group positive side up, and the second parallel group negative side up. I laid the nickel strips on top of each of the three sets of cells, bridging the positive caps of the first parallel group with the negative terminal of the second parallel group, as shown in the picture.

Sizing a bike correctly is important for pedaling efficiency and safety. Fitting a bike involves many factors. However, the basic considerations before buying a bike include frame size, seat height, and…