“enduring battery cb 10-12 scooter |”

HERE ARE 50 GENIUNE MOLI ICR-18650H 18650 CELLS. THESE WERE TESTED IN ONE OF OUR LIITOKALA TESTING STATIONS AND THESE ARE ALL BETWEEN 1201-1400MAH! THEY ARE UL LISTED CELLS AND MANUFACTURED IN CANADA …

Select items that are not included in ShippingPass will ship for free but with value shipping. Look for items sold by Walmart.com and marked with FREE shipping. You will also see this noted in checkout.

The following is an overview of the ShippingPass Pilot subscription service. You should review the Terms & Conditions for a more detailed description as well as service limitations prior to signing up for ShippingPass.

If none of our own battery offerings meet your needs, we can also highly recommend the knowledgeable folks at Batteryspace.com and EM3EV as alternate suppliers of lithium battery packs in a wide range of capacities, form factors, and voltages. 

Unless you’ve got a specific design need, it feels to me like the two best value at the moment for a typical E-Bike build are 36v15Ahr and 48v10Ahr. With the choice being LiNiCoMn for smaller/lighter/cheaper or LiFePo for lifespan/higher-C but a bit more heavy/bulky/expensive.

With the voltage known, the next item to figure out is how many amp-hours will be required to achieve your desired trip distance without the battery running flat. This depends of course on how much pedaling you contribute to the effort, how fast you are traveling, and the terrain you are on. The following table is based on minimal pedaling effort.

Sealed Lead Acid (SLA) remains the most affordable entry-level battery option. However, their life-cycle is so short, it is more cost-effective to pay twice as much to get a lithium-based battery that will last 6-times longer.

When it comes to lead acid batteries for ebike use, you’ll generally be looking for what’s called a “sealed lead acid” or SLA battery. SLAs come sealed in a hard plastic case and can be turned in any orientation safely without leaking acid. This makes them appropriate for ebike use. Wet cell lead acid batteries, like many car batteries, would leak dangerous acid if turned on their side or upside down, making them a bad idea for use on an electric bicycle, which is a lot more likely to get knocked over than a car. Remember to stick with SLAs – not wet cell lead acid batteries – for electric bicycle use.

12. Privacy Policy: Information submitted with an entry is subject to the Privacy Policy stated on the Electric Bike Technologies LLC Web Site. Read the Privacy Policy here: https://www.ebikekit.com/pages/privacy-policy.

Is there same officially recognized method to come up with C ratings? Ping claims 2C on his LiFePo4 batteries, my Chinese-made “BMC” battery claims 3C. Can they just sort of say whatever they want? How do we determine the “real” C rating?

Thank you very much for quick answer. You give me a good advice and I will use it. To sum up, now I am on the cross Li-ion or LiFePO4, can you sugest me some othre examples like Panasonic 18650 which you tested and you clame are good batterys? For BMS, is there special tipe which are good or there is no different or just like you says it must be for a bit stronger etc. batterys give 30A we must have a bit stronger BMS like for 40A?

There are two main levels of spot welders currently available: hobby level and professional. A good hobby model should run about $200, while a good professional one can easily be ten times that price. I’ve never had a professional welder because I just can’t justify the cost, but I do own three different hobby models and have played around with many more. Their quality is very hit or miss, even on identical models from the same seller. Unfortunately the lemon ratio is quite high, meaning you could fork over a couple hundred bucks for a machine that just won’t work right (like my first welder!). Again, this is a good reason to use a site with buyer protection like Aliexpress.com.

I then put one set of welds on each cell end of the first parallel group, effectively tacking the three nickel strips in place. Then I added another set of welds on each of the negative terminals of the second parallel group. This gave me 6 weld sets, or one weld set for each cell. Lastly, I followed up those single weld sets with another couple welds per cell to ensure good contact and connection.

For discharge wires you’ll want something bigger, like 14 awg silicone wire. 12 awg would be better but might be overkill for your use. For charge wires, 16 awg silicone wire would be fine and you could probably get away with 18 awg silicone wire.

Now take your trip distance, multiply it by the appropriate watt-hours/km from the table above, and you’ll get the total minimum watt-hours required for the trip. Take the watt-hours you’ve estimated and divide it by the voltage, and you now have an estimate on the minimum amp-hours you’ll need from the pack.

13. Winners will be emailed directly by the marketing manager. Must respond within a week. Winner may also be announced on Facebook.               14. Sponsor: The Sponsor of the Sweepstakes is Electric Bike Technologies LLC, 951 River Road, Croydon, PA, United States;

Well, you’re right that I wouldn’t recommend it! I admire your ingenuity but there are a couple big issues with this setup: 1) You have 4 groups of 10 series cells but no way to balance between them. The 4 cells need to be paralled before they are wired in series otherwise they will get increasingly out of balance with each charge/discharge cycle. 2) I’m not sure you’d get a good enough contact from a copper spring or busbar that is just held on the end of the cells in compression. The copper will also corrode over time and caused increase resistance at the point it touches the cells and problems down the road.

That’s exactly correct. You’d start by welding 10 parallel groups of 4 cells each, then you’d connect those 10 parallel groups in series to make one rectangular battery. I’ve done many 10s4p packs just like that for 36V 10ah ebike batteries.

Alibaba.com offers 176,519 electric bike battery products. About 29% of these are electric bicycle, 22% are rechargeable batteries, and 8% are electric bicycle battery. A wide variety of electric bike battery options are available to you, such as 36v, 24v, and 48v. You can also choose from lithium battery, lead acid battery. As well as from 10 – 20ah, 21 – 30ah, and > 40ah. And whether electric bike battery is paid samples, or free samples. There are 176,478 electric bike battery suppliers, mainly located http://twowheelev.com Asia. The top supplying countries are China (Mainland), Taiwan, and Vietnam, which supply 99%, 1%, and 1% of electric bike battery respectively. Electric bike battery products are most popular in North America, Western Europe, and Northern Europe. You can ensure product safety by selecting from certified suppliers, including 39,164 with ISO9001, 14,565 with Other, and 6,300 with ISO/TS16949 certification.

Thank you for the article! I am currently making a battery for an electronic skateboard, so I need the layout to be as thin as possible to allow ample room underneath the deck. Currently, I have 6 packs of 3 cells welded in parallel, and would eventually like to create a battery which is 9 cells long, 1 wide, and 2 high, for 18 in total (the two packs of nine would then be welded in series). I am wondering if I could be able to make 2 battery packs by welding 3 of my current 3 cell packs together in parallel to make a long, yet skinny pack, and then welding both packs of nine in series using the alternating system. Essentially, I would be creating a pack that would look like 3 of the ones you show above when making your first series connection. Let me know what you think, and thank you!

Next, plan out your cell configuration on your computer or even with a pencil and paper. This will help ensure you are laying out your pack correctly and show you the final dimensions of the pack. In my top-down drawing below I’ve designated the positive end of the cells in red and the negative end of the cells in white.

“electric bike replacement battery +battery for scooter”

3. Lastly, I assume if the BMS & battery were able to produce the 50A X 24V watts of 1200W that my electric motor would only ever use the 500W it is rated for? As in the E bikes controller would only draw around 500W?

Actually I have ran into a problem – a few days ago I was riding it up a hill on a hot day when the power cut off and it wouldn’t start again. When I tried to charge it, the light on the charger just flickered from green to orange. I took out the battery and found that one of the cells had corroded from what looks like overheating. I think that the battery pack failure was most likely caused by too much of a load applied to the battery pack.

Lithium batteries are also small enough to allow you to place your batteries pretty much anywhere on your bike. This is especially true for people who want to assemble their own pack or use heat shrink wrapped lithium batteries instead of hard case lithium batteries with prefabricated bicycle frame mounts. This can help spread the weight around or hide the batteries to make a stealthier bike.

If you want to test cells from different vendors, the best thing to do is run them through a discharger, batteries for e bike a fancy graphing one, and preferably at a high current rating close to the maximum discharge rating. Fake cells are lower quality and won’t be able to provide the same capacity, and will have a larger voltage sag under higher loads.

hello, firstly i would like to say that i think this is a brilliant article its really helped me understand a lot more about how this works and how i can use a similar system for my project but i am a little confused and i was hoping to pick your brains….

The biggest advantage of lead acid batteries is their price: dirt cheap. Lead acid batteries can be purchased from many different online retailers and local stores. Purchasing SLAs locally helps save on shipping and makes them even cheaper. Many hardware and electronic stores carry them. Even Radioshack has them, though you’ll pay more there.

A quick note: when you get into large sizes of heat shrink, the method of quoting the size often changes from referring to the diameter of the tube to referring to the flat width (or half the circumference when in a circle). This is because at these large sizes, it’s not so much a tube anymore as two flat sheets fused together, sort of like an envelope. Keep that in mind and know what size is being quoted when you buy your large diameter heat shrink tube.

I think it is much better to use a purpose built CV-CC (constant voltage, constant current) ebike charger. I 100% understand the desire to complete the project on the cheap, but I think that sometimes it is worth a few extra bucks as insurance to protect your battery which is worth many hundreds of dollars.

Hi Jonathon. You’d need a female XLR cable for the discharge port on your new battery (so it can plug into your Porteur’s charge port) and you’d need a second XLR connector, this time a male, for the charge port of your new battery. That way you could use your original Porteur’s charger to charge both batteries.

Hi, if this is the first time you’ve heard about us, we recommend that you search “bmsbattery” or “bms battery” on Google or any other search engine to find out more about our excellent products, service and good reputation.  Time has proven that we are the best

I also soldered rather than spot welded and used 1.5mm2 solid core copper between cells, pre-bent to zig-zag shapes on a jig (current is then distributed between them). Offtakes were 4mm2. Soldering technique to minimise heat on the cells was to paint the cells and the wire with flux, load the soldering iron tip with enough solder to make the joint and then, while holding the wire on with the back of a wooden pencil, touch the molten solder to the cell/wire interface and immediately remove the soldering iron tip. This worked really well in terms of soldering quality and the solder cooled very quickly indeed. I cleaned the flux off with a baby wipe and then dried it with some paper kitchen towel.

If any one battery cell varies significantly from the others, do NOT connect it to the other cells. Paralleling two or more cells of different voltages will cause an instantaneous and massive current flow in the direction of the lower voltage cell(s). This can damage the cells and even result in fire on rare occasions. Either individually charge or discharge the cell to match the others, or more likely, just don’t use it in your pack at all. The reason for the voltage difference could have something to do with an issue in the cell, and you don’t want a bad cell in your pack.

I have an unrelated problem. I am prototyping a 1/3 scale model of a top fuel funny car.It’s 5 ft long, 2ft wide, wt. is approx. 100lbs.. I need to go 120 mph in under 4 seconds in 333 feet. Will the 5405 mtr. suffice? I know your going to ask alot of tech. questions but thats all I have for now.Any help in this quest for speed is greatly apprecated. Thank you robert lathrop

I am having 36v lithium battery with 4.4 Ah(segway -balancing wheel battery pack ) but i want to convert this battery in to 36v with 9 ah is it possible to add one more 36v lithium 4.4 ah battery with this and i can use as 36v 8.8 ah battery ???? please help me iam not getting lithium battery in india for my e bike

Also I wanted to “hide” the batteries in the Brompton frame aligning the batteries in file, I understand it would not have a long range but would be quite stealthy. If you have any recommendations please do tell me

Do you by any chance have some spare parts you can swap in? A spare controller would you let you know if the controller is faulty and tripping early. Another battery would show you if the problem was battery related.

The next consideration is ensuring that the battery is large enough for your required travel range; it’s no fun having a battery go flat before the end of your trip. In order to determine the range that you will get from a given battery, you need to know both the watt-hour capacity of the battery, and how much energy you use per kilometer. Sounds complicated? Not really. As a rule of thumb most people riding an ebike at average speeds consume about 10 Wh/km from their battery, and this makes the math very easy. If you have a 400 watt-hour battery, you can expect a range of 40km. A 720 watt-hour battery? ~72km

After writing my question, I did more research on these cells regarding overcharging and over-discharging and I see where you’re coming from regarding not having connections between the parallel cell blocks to smooth out differences between individual cells. So as a permanent installation, it’s not going to work. However, I’ve had another thought, which I’ve put at the final paragraph.

When you series connect batteries, you want to make sure they are packs with identical capacity and specs. You also want to make sure that either your controller or Cycle Analyst low voltage cutoff is set such that the discharge stops as soon as one pack trips. Otherwise continuous current will continue to flow through the pass diode when you are running off just the one non-tripped battery, causing the diode to overheat and fail.

Hey, I’m about to build my 16S2P pack from 32 Samsung INR18650-25R cells bought from batterybro.com. How far apart can their voltages be when you connect the parallel packs? They seem to all be charged between 3.52V and 3.56V.

Introduce Yukon Trail 2018 new model Xpedition Features: 350w motor Battery: Samsung lithium battery (light weight 5 lbs with case) Speed/Mileage: up to 20MPH, up to 28 miles per full charge (varies b…

If you have some wire scrap left from any other project you could use them to lengthen the sense wires to your BMS and not need to relocate the BMS. Very little current travels through the sense wires so you can use very small diameter wire. Even the wire from an old USB cable would work.

“replacement battery for electric scooter -36v scooter battery”

I’m a little worried that your batteries aren’t what you think they are. If they really are AA sized, which is rare in the lithium battery world, then they are not 3,000 mAh. Next, 10 cells in series is going to give you 36V, which is twice what your 18V drill is rated for. 5 cells in series and 2 in parallel would be a better method. I usually recommend a BMS but you can skip it if you have another way of diligently monitoring your cell voltages and then charging using an RC style balance charger like an iMaxB6 charger through an JST-XH connector.

This is 14 series 52V (58.8v full charge) lithium battery power protection board. Balanced, same port continuous 45A discharge. 1x 14S 45A Lithium Battery Protection Board. Step2:After confirm the wir…

I guess I’ll just have to risk some deterioration on the cells. I don’t think there’s much of an effect, as I did it on an old 18650 cell to test. The joint and surrounding areas were cool to the touch within 1-2s of removing the heat.

Lithium electric bike batteries are not cheap, they are not perfect, and they are not readily available. Some OEM’s such as BionX sell a moderately sized lithium e-bike battery pack for $1000 plus. Optibike sells their touring LiPo battery as an add-on accessory for their bike for a gasping $2500. It is surprisingly difficult to find a ready to plug in LiPo battery pack for sale on the internet by any real company.  The reason is simply product liability.

Interesting that they claim the controller is balancing the two batteries. I highly suspect that is false, and just marketing fluff, but who knows. They probably have a simple diode built into the internal battery. I checked with a friend and he reminded me that it would be a good idea to include a diode in the discharge cable of your auxiliary battery. That way if you ever plugged in your auxiliary battery when it was low on charge and the bike was fully charged, the bike wouldn’t try to charge your auxiliary battery in reverse.

Manufacturers usually rate their cells’ capacity at very low discharge rates, sometimes just 0.1c, where the cells perform at their maximum. So don’t be surprised if you’re only getting 95% or so of the advertised capacity of your cells during real world discharges. That’s to be expected. Also, your capacity is likely to go up a bit after the first few charge and discharge cycles as the cells get broken in and balance to one another.

A recent quote from ES member SamTexas on claimed max C-rates: “…I have in front of me Samsung’s own Nickel (Manganese) 18650 https://en.wikipedia.org/wiki/Electric_bicycle have tested these cells at 3C continuous and they do deliver full capacity at that rate. Push it to 5C and they become hot and capacity is greatly reduced…“

The main limitation of those holders is power – they can’t handle it. For a few amps, they might be fine, but ebikes require dozens of amps, which would surely melt those guys. Think about it this way: professional ebike batteries have big hunks of nickel plate welded between cells. The tiny little spring contacts of those holders will never compare to that kind of current carrying ability.

I continued with all 10 sense wires, placing the last one on the positive terminal of the 10th parallel group. If you aren’t sure about which groups are which, or you get confused, use your digital voltmeter to double check the voltages of each group so you know you are connecting each wire to the correct group.

Many retailers suggest charging the battery at least once a month if the bike is not ridden much, and say that the more the bike is ridden, the stronger the battery will be. All batteries, though, will deteriorate in time and they will need to be replaced and disposed. When that time comes, it’s best to ask your local retailer how to dispose of the battery, but bear in mind that local authorities should provide recycling and disposal facilities.

You may have read recently about the “Bad Girl” of battery chemistries. Its rediculously high C-rate of 20C minimum (you can actually find them with a higher C-rate than this!) means that this is the battery of choice for Electric racers. A proper charging system is expensive, but the batteries themselves were surprisingly cheap when sourced directly from China. What’s the bad part? On rare occasions, they might…CATCH ON FIRE!? 

Sure, it is possible to solder directly to the cells (though it can be tricky without the right tools). The problem with soldering is that you add a lot of heat to the cell and it doesn’t dissipate very quickly. This speeds up a chemical reaction in the cell which robs the cell of its performance. The result is a cell that delivers less capacity and dies an earlier life.

Great for DIY e-bike and powerwall builders, t ake them apart and put them all together in series in other projects and get extreme power out of what you build! These batteries are made with TWENTY (2…

Hi, if this is the first time you’ve heard about us, we recommend that you search “bmsbattery” or “bms battery” on Google or any other search engine to find out more about our excellent products, service and good reputation.  Time has proven that we are the best

There is a recently introduced battery chemistry that we will likely be seeing a lot of soon. Lithium-Nickel-Manganese-Cobalt-Oxide, or LiNiMnCoO2/NMC. Since Asian battery manufacturers have been working on a wide variety of alternative chemistries, a manufacturer standards group has chosen the  abbreviation NMC for this chemistry (although one wholesaler stubbornly calls it NCM).

I purchased the 220v welder, which obviously was intended to run on non-US half of a phase 220v, Of course we have full single phase 220v, so could you supply me with a hint on how to wire the unit for US 220 v.

“electric bike motors and batteries _bicycle battery”

If you have time, I’d be curious to hear about the pros and cons of this kind of approach. Is the main drawback simply the cumulative size of the plastic housing? Or is there some other limitation to this kind of hardware that makes it unsuitable?

The biggest advantage of lead acid batteries is their price: dirt cheap. Lead acid batteries can be purchased from many different online retailers and local stores. Purchasing SLAs locally helps save on shipping and makes them even cheaper. Many hardware and electronic stores carry them. Even Radioshack has them, though you’ll pay more there.

The single best manufacturer is BesTechPower, but their BMS’s are really expensive and they have a minimum order quantity of 2. For ‘best bang for your buck’ BMS’s I’d recommend Greentime BMS’s. They are great for most ebike applications outside of serious hotrods and speed machines. I use them on most of my packs.

The last step of wiring the BMS is to add the charge and discharge wires. The pack’s positive charge wire and discharge wire will both be soldered directly to the positive terminal of the 10th parallel group. The negative charge wire will be soldered to the C- pad on the BMS and the negative discharge wire will be soldered to the P- pad on the BMS. I also need to add one wire from the negative terminal of the first parallel group to the B- pad on the BMS.

I want to take the apart and use the cells to make a 48V 16.8ah battery. Would you advice against this? Would 48V provide a noticeable difference in the power of my motor? (It is a 500W Falco Direct Drive Hub Motor)

i noticed that bms installation is different (as i guess) from the video (https://www.youtube.com/watch?v=rSv9bke52eY&index=10&list=LLDXj2cy8mbQoc0dz3RO3zFw) i have watched before. In this video bms wires were connected on the negative poles of batteries lifepo4. In my amateur opinion i could not understand how we organize BMS connections for my 13s pack. if you illuminate me, i will be preciated.

If you don’t have an actual heat gun, you can use a strong hair dryer. Not all hair dryers will work, but my wife’s 2000 watt model is great. I own a real heat gun but actually prefer to use her hair dryer because it has finer controls and a wider output.  Just don’t go mess up your wife’s hair dryer!

Finally found it. WOW!! Exactly what was needed. I struggle with conceptualizing verbal descriptions. You solved that! With the new JP Welder from Croatia my first welded build will soon be a reality. Thanks for all you do for eBiking!

Regarding the soldering of cells: generally it is not recommended as no matter how you do it, a soldering iron will still transfer more heat than a spot welder. That being said, I have seen packs that have been welded using both solid or braided copper wire. I’ve also seen someone use copper wick soldered to the cells terminals. It’s impossible to know exactly how much of an effect that the heat transfer had on the cells but if you don’t mind taking a risk of some level of deterioration of the cells performance, then it technically is possible to solder the cells together.

Your battery pack size is based on voltage and amp-hours. The higher the voltage and the higher the amp hours of your battery, the more range your battery will give you. A 48V 10-Ah pack gives you 480 watt hour (48 X 10). This gives you an easy way to determine exactly how much battery you are buying. The wattage of a battery is the only accurate determinant to judge what range your finished ebike will have.

Well, you’re right that I wouldn’t recommend it! I admire your ingenuity but there are a couple big issues with this setup: 1) You have 4 groups of 10 series cells but no way to balance between them. The 4 cells need to be paralled before they are wired in series otherwise they will get increasingly out of balance with each charge/discharge cycle. 2) I’m not sure you’d get a good enough contact from a copper spring or busbar that is just held on the end of the cells in compression. The copper will also corrode over time and caused increase resistance at the point it touches the cells and problems down the road.

Most of the problems occur when charging an ebike because they are unsupervised and that is when a LiPo fire can burn down a house etc. Use common sense on where you are going to charge your bike or battery pack, so that if it does burst into flames it does not take your house with you. I have a big steel barbecue grill set up in my entryway which  I charge my battery packs in  as nice safeguard.  This involved taking the battery pack out of the bike after each ride but I am OK with that:

SLAs come in 6V or 12V increments, meaning you have to build your battery pack by combining these smaller SLAs in series and/or parallel to get the specific voltage and capacity you’re aiming for. This can be both an advantage and disadvantage; it gives you more room for customization but requires some work to combine the individual SLA batteries together into a larger pack.

36V10Ah Li-Ion NiCoMn “Little Frog” ABS shell ebike battery pack. Included 2p10s 5Ah polymer cells, 1pcs 15A continuous discharge current BMS, 1pcs 36V2.5Amps EMC-120 Lithium Ion battery Alloy shell charger.

As far as dimensions, I prefer to use 0.1 or 0.15 mm thick nickel, and usually use a 7 or 8 mm wide strip. A stronger welder can do thicker strip, but will cost a lot more. If your welder can do 0.15 mm nickel strip then go for it; thicker is always better. If you have thinner strips then that’s fine too, just lay down a couple layers on top of each other when necessary to create connections that can carry more current.

I did not intend for the timeline to reflect anything other than what I recall seeing as E-bike battery packs. Some chemistries have been around a long time before they were used by a significant number of E-bikers.

I’d recommend going with a cell that can output 10A, giving you 40A continuous power rating. You’ll use less than that, meaning the cells will be happier (and cooler). Something like the Sanyo 18650GA or LG MJ1 would give you good power and capacity (both are around 3,400 mAH per cell).

Also, since the negative electrode is the entire bottom and sides of the cell (formed by a metal cylinder) these cells can take some bouncing around. Be aware if you scratch the plastic wrap on the cylinder, the metal shell underneath is energized to the negative electrode, so…an electrical short may be possible.

When it comes to choosing a BMS, the number of cells you have in parallel aren’t important. Only the number of series cells matters. The same BMS will work with 1 or 100 cells in parallel, as the voltage stays the same regardless of the number of parallel cells.

The BMS I chose is a 30A maximum constant discharge BMS, which is more than I’ll need. It’s good to be conservative and over-spec your BMS if possible, so you aren’t running it near its limit. My BMS also has a balance feature that keeps all of my cells balanced on every charge. Not all BMS’s do this, though most do. Be wary of extremely cheap BMS’s because that’s when you’re likely to encounter a non-balancing BMS.

2018 model Pedalease Estar MTB electric mountain bike 1000w or 1500w rear hub motor with option of 48v 10ah, 48v 11.6ah and 48v 17ah lithium battery. Motor: Pedalease 1000W or 1500w rear drive brushle…

The other thing to consider is that if you have one 48-volt 10-Ah battery putting out a measly 20 amps, you can add a second version of the same battery, wire them together in parallel, and you will have a 20-Ah pack with a 40-amp capacity, thus effectively doubling your range and doubling your amp output performance.

Different batteries have different amperage capacities. Most cheap lithium batteries are not capable of putting out much amperage. If you have a 48 volt bike that performs well when using 25 amps, you are going to want a 48 volt battery that has close to a 20-Amp-hours or more.  If you want to eventually hot rod your ebike (read our hot rod hub motor primer here), you may want to  invest now in a high amperage battery. This will “future proof” your system by paying a little bit more now for the battery, but then you can program more performance from the controller in the future, if you want…

Sizing a bike correctly is important for pedaling efficiency and safety. Fitting a bike involves many factors. However, the basic considerations before buying a bike include frame size, seat height, and…

If I regroup my 12 paralled cells in 10 modules, can I then join these in series using single wires (one for neg, one for pos) between modules, instead of wiring each terminals of each cells http://huntnbike.com you are doing. Could this affect BMS and/or have any negative impact on cells balance?

“battery powered scooter _e bike batteries”

Before I seal my batteries in heat shrink, I like to wrap them in a thin layer of foam for added protection. This helps keep the ends of your cells from getting dinged if the battery receives any rough treatment, which can happen accidentally in the form of a dropped battery or ebike accident. The foam also helps to dampen the vibrations that the battery will experience on the bike.

That’s a tough one to answer. It depends on the power of the battery (typically 24, 36 or 48V), the power of the bike (limited in the UK to 250W), the bike’s battery management system, and the way you ride. Some bikes allow you to choose different levels of assist to prioritise speed or battery life, which makes predictions of battery life even more difficult.

The RC roots of LiPo are why they are most frequently sold in flat square foil packets with no protective covers. Hard-case cylindrical cells take up too much volume inside  an RC model (airspace between the round cylinders), and RC builders are free to add as much (or as little) protective housing as they want to the flat foil-packs.

8. Rights Granted by you: By entering this content you understand that Electric Bike Technologies LLC, anyone acting on behalf of Electric Bike Technologies LLC, or its respective licensees, successors and assigns will have the right, where permitted by law, without any further notice, review or consent to print, publish, broadcast, distribute, and use, worldwide in any media now known or hereafter in perpetuity and throughout the World, your entry, including, without limitation, the entry and winner’s name, portrait, picture, voice, likeness, image or statements about the Sweepstakes, and biographical information as news, publicity or information and for trade, advertising, public relations and promotional purposes without any further compensation.

I hope not to have to replace the whole battery pack and wondering if it can be salvaged by replacing the just the dead cells and burnt connectors, or do you think the damage is too extensive to be worth repairing it?

A high quality USA battery manufacturer by the name of “Allcell” constructs packs consisting of 18650 cells (cylindrical cells that are 18mm diameter and 65mm long) and uses high tech packing materials to spread out the cells and thus the pack gets a longer life. This is the pack of choice in many high end commercially available ebikes including the Optibike, the Picycle, and the Hanebrink. (click on each to see article on that electric bike). The 18650 battery cell format is mass-produced for laptop computers and cordless tools.

When you series connect batteries, you want to make sure they are packs with identical capacity and specs. You also want to make sure that either your controller or Cycle Analyst low voltage cutoff is set such that the discharge stops as soon as one pack trips. Otherwise continuous current will continue to flow through the pass diode when you are running off just the one non-tripped battery, causing the diode to overheat and fail.

Different batteries have different amperage capacities. Most cheap lithium batteries are not capable of putting out much amperage. If you have a 48 volt bike that performs well when using 25 amps, you are going to want a 48 volt battery that has close to a 20-Amp-hours or more.  If you want to eventually hot rod your ebike (read our hot rod hub motor primer here), you may want to  invest now in a high amperage battery. This will “future proof” your system by paying a little bit more now for the battery, but then you can program more performance from the controller in the future, if you want…

Eric has been involved in the electric bike industry since 2002 when he started a 6000 square foot brick and mortar Electric Bike store in downtown San Francisco. He is a true believer that small electric vehicles can change the way we operate and the way we think.

A lithium battery is the heart of any electric bicycle. Your motor is useless without all of that energy stored in your battery. Unfortunately though, a good ebike battery is often the hardest part to come by – and the most expensive. With a limited number of electric bicycle battery suppliers and a myriad of different factors including size, weight, capacity, voltage, and discharge rates, finding the exact battery you are looking for can be challenging and lead to unwanted compromises.

The answer is that, unless you are seriously budget or weight constrained, this would probably be a bad battery investment. It might fit the bill initially for your commuting needs, but then it doesn’t really leave any reserve if you need to run some errands on the way home, or forget to charge it up one night etc. Even worse, as the battery ages http://usebikeparts.com time the capacity drops. After a year your 8Ah battery is now only 7Ah, it’s only barely able to do your daily commute, and the next year when it is just 6Ah you now need to carry the charger with you and top it up at work every day.

Thanks so much for the info, that sounds great and an exciting option! I understand the warranty issue but aside from that, you don’t see any issue than with building a battery of any capacity and just making the discharge cable with an xlr connection to plug into the bike. Would I need a different cable to charge the battery or does it charge via the xlr connection like theirs? Here is one more link with a few more answered questions about their auxiliary battery if you wanted more info. Thanks again, this is really exciting, I just want to make sure I don’t fry anything

Well, I’ve finally built a pack, which in the end turned out to be a 16s6p/7p made from recycled dead laptop batteries, charging to 67.2V and has a secondary offtake for a controller on the 13s positive (i.e. to route 16s to the FETs and 13s to the control circuit). Some of the groups were OK for 12Ah from 6 cells, others needed 7 cells; I just used what I had and as I got the laptop batteries for free, it was better for me spend the time testing them than to use 80 new cells, which would have been quite expensive.

Manufacturers usually rate their cells’ capacity at very low discharge rates, sometimes just 0.1c, where the cells perform at their maximum. So don’t be surprised if you’re only getting 95% or so of the advertised capacity of your cells during real world discharges. That’s to be expected. Also, your capacity is likely to go up a bit after the first few charge and discharge cycles as the cells get broken in and balance to one another.

40% grade hills? That’s huge! You’ll definitely want a cell that can perform at high current since you’ll be pulling peak power from those cells to get up those big hills. Something like the Samsung 25R would be a good choice for this application.

If you are excited about this improvement in battery chemistry, (NCM being 25% smaller/lighter that the fussy LiFePO4, and 300% better C-rate than the reliable and non-fussy LiMnO2) you may also be asking the question…What chemistry is next?

As you sugested in one of your articles, using lead acid is a great way to prototype the build, so if I am happy with the performance if not the weight of the lead-acid, I can convert to lithium in the future and save some big weight.

Now I’m sure you’re all jazzed about building your own battery pack. But just in case, I’m going to leave you with an awesome video featuring battery builder Damian Rene of Madrid, Spain building a very large, very professionally constructed 48V 42AH battery pack from 18650 cells. You can read about how he built this battery here. (Also, note in the video his good use of safety equipment!)

For a 24V 7s pack, I’ve used this BMS a few times and been quite happy with it: http://www.aliexpress.com/item/7S-Li-ion-Lipo-Batteries-Protection-Board-BMS-System-24V-29-4V-20A-Continuous-Discharge-350W/32336397316.html

A123 is a brand name of lithium ion phosphate battery used in many EV even full car applications.. A123 cells are known to be of high quality and capable of having high-amp discharge rates with long life expectancy of over 1000 charges. They can provide large amounts of power and have been used in racing applications as well as electric car builds. Chrysler has chosen to use A123 cells in their electric cars.

Micah is a mechanical engineer, tinkerer and husband. He’s spent the better part of a decade working in the electric bicycle industry, and is the author of The Ultimate DIY Ebike Guide. Micah can usually be found riding his electric bicycles around Florida, Tel Aviv, and anywhere else his ebikes wind up.

Your product will be shipped to its final destination to arrive in 2 business days or faster. If your order is placed before the 11 a.m. PST cutoff time, then it will ship that day and arrive 2 business days later. If your order is placed after the 11 a.m. PST cutoff time, we will do our best to process it the same day but may need an extra day.

I have a homemade battery made up of 84 NCR18650b cells that I bought (in other words, I didn’t make the battery myself). Anyway, I lost the charger for it at Burning Man, and now I’m going nuts trying to figure out what kind of charger to buy. The arrangement of the batteries is odd. Part of the battery looks pretty straight forward in what I believe is a 8s6p design, but the rest look different… they are set up like a 4×3 rectangle framed by 2 L’s. I would have happily uploaded a picture, but that doesn’t seem possible. Is there anyway I can send you a picture to show you what I mean?

One of the first advantages of lithium batteries is their small size. You can fit a lot of lithium on a bicycle frame. This alone can give your ebike some seriously impressive range. Two or three mid to large capacity lithium batteries could easily fit on one ebike, giving potential ranges of 100 miles (160 km) or more. I guess this would be great for people that don’t mind sitting on their bike for three to five hours at a time, or that for some reason don’t want to charge up for weeks (hey, when riding your ebike through a zombie apocalypse, the last thing you want to be doing is searching for an outlet).

That’s a good option. You’ll notice about a 30% increase in power, as well as a 30% increase in speed. Your motor can certainly handle it, the question is if your controller can. Make sure it’s rated for 48V or you’ll need to swap in a different controller.

The single best manufacturer is BesTechPower, but their BMS’s are really expensive and they have a minimum order quantity of 2. For ‘best bang for your buck’ BMS’s I’d recommend Greentime BMS’s. They are great for most ebike applications outside of serious hotrods and speed machines. I use them on most of my packs.

I am having 36v lithium battery with 4.4 Ah(segway -balancing wheel battery pack ) but i want to convert this battery in to 36v with 9 ah is it possible to add one more 36v lithium 4.4 ah battery with this and i can use as 36v 8.8 ah battery ???? please help me iam not getting lithium battery in india for my e bike

Regarding the cell question, its a mixture of both. Cheap ebikes use cheap cells. You can bet the Sonders ebike had the cheapest cells available. Name brand ebikes usually use Samsung cells, but sometimes LG and occasionally Panasonic cells can be found in name brand ebikes (the Panasonics are some of the most expensive and so they are rarer). That being said, I’ve seen some shadier internet sites selling high quality (and genuine) Samsung/Panasonic packs, and I’ve seen some nice ebikes with some no-name cells. You should always check with the vendor/manufacturer if you want to ensure you’re getting good cells. Unfortunately, it can be hard to verify the cells yourself though without voiding the warranty, as they are usually sealed under shrink wrap. A good vendor will be happy to confirm the cells for you ahead of time and may even be able to show you some pictures of opened packs to verify.

Either way works, but my orange jig saves me one hot glue step which just makes for a cleaner looking pack. Of course it’s all the same after the pack gets covered with shrink wrap, so you can use any method you’d like. I’ve even found that some of those cylindrical ice cube trays are perfectly sized to hold 18650 cells. Cutting off the top would leave it clear for welding. I’d add some strong neodymium magnets to the backside to hold the cells in place like my orange jig has, but other than that it’s a perfect jig almost as-is.

There are two main levels of spot welders currently available: hobby level and professional. A good hobby model should run about $200, while a good professional one can easily be ten times that price. I’ve never had a professional welder because I just can’t justify the cost, but I do own three different hobby models and have played around with many more. Their quality is very hit or miss, even on identical models from the same seller. Unfortunately the lemon ratio is quite high, meaning you could fork over a couple hundred bucks for a machine that just won’t work right (like my first welder!). Again, this is a good reason to use a site with buyer protection like Aliexpress.com.

Make sure to consult the wiring diagram for your BMS, because some BMS’s have one more sense wire than cells (for example, 11 sense wires for a 10S pack). On these packs, the first wire will go on the negative terminal of the first parallel group, with all the rest of the wires going on the positive terminal of each successive parallel group. My BMS only has 10 sense wires though, so each will go on the positive terminal of the parallel groups.

“lithium ion battery for electric bike +48 volt battery for electric scooter”

Hi Jonathon. You’d need a female XLR cable for the discharge port on your new battery (so it can plug into your Porteur’s charge port) and you’d need a second XLR connector, this time a male, for the charge port of your new battery. That way you could use your original Porteur’s charger to charge both batteries.

Work in a clean area free of clutter. When you have exposed contacts of many battery cells all wired together, the last thing you want is to accidentally lay the battery down on a screwdriver or other metallic object. I once nearly spilled a box of paperclips on the top of an exposed battery pack while trying to move it out of the way. I can only imagine the fireworks show that would have caused.

batteries e bike battery exide electric bike battery 48v battery 48v electric bike battery 24v battery gp battery 36v battery aw battery aeg battery ev battery 48v e bike battery 3c battery ima battery bb battery More…

The bike was more than happy to run and pull me along as long as the throttle was kept very low (<~30%) but as soon the throttle was turned more or I came across a slight gradient uphill the system would cut off (no lights or power). I then have to plug the battery into my charger to 'reset' it before I can then plug it back into my bike and make it work again. I have to keep the throttle low whilst I am riding on the bike before it cuts out but if the wheel is spinning freely in the air then I can max out the throttle and make the motor run at full speed. 2. Agreement to Rules: By participating, you agree to be fully unconditionally bound by these Rules, and you represent and warrant that you meet the eligibility requirements set forth herein. In addition, you agree to accept the decisions of Electric Bike Technologies LLC, batteries for electric scooters canada final and binding as it relates to the content. The Sweepstakes is subject to all applicable federal, state and local laws.

A High-performance Motor acheives a top speed of 20-30km/h with a range of 20km means your ebike commute just got easier. Power: Under 500W. Load capacity: under 200KG. Material: Aluminum Alloy. Outdo…

Features: It is so light weight , easy to transport and to take it. It is eco-friendly and safe to use it. The battery holder is so stable and sturdy. Super powerful,safe and reliable. Suitable for bi…

I just found your article, and as if it were destiny, this is exactly what I am trying to do (build a battery pack with BMS, and charge with charger). I am new to this, however, and have a question or two…

Hi Micah, I have been studying your how to build an bike battery, and enjoyed all the tips. I have been having a bit of difficulty figuring out the wiring portion of the construct however. For example, you talk of C, B and P pads and wires you solder to the top and bottom of the pack; the yet don’t put arrows to or refer to their colors for easy identification. The charge and discharge instructions for connecting are gone over rather fast with little for us to identify with exactly where to attach to, etc. Could you revisit your post here and include some baby steps for those who can’t follow the reference instructions you give for wiring the BMS?

Thank you for the article! I am currently making a battery for an electronic skateboard, so I need the layout to be as thin as possible to allow ample room underneath the deck. Currently, I have 6 packs of 3 cells welded in parallel, and would eventually like to create a battery which is 9 cells long, 1 wide, and 2 high, for 18 in total (the two packs of nine would then be welded in series). I am wondering if I could be able to make 2 battery packs by welding 3 of my current 3 cell packs together in parallel to make a long, yet skinny pack, and then welding both packs of nine in series using the alternating system. Essentially, I would be creating a pack that would look like 3 of the ones you show above when making your first series connection. Let me know what you think, and thank you!

A quick note: when you get into large sizes of heat shrink, the method of quoting the size often changes from referring to the diameter of the tube to referring to the flat width (or half the circumference when in a circle). This is because at these large sizes, it’s not so much a tube anymore as two flat sheets fused together, sort of like an envelope. Keep that in mind and know what size is being quoted when you buy your large diameter heat shrink tube.

It’s not impossible, but I don’t have high hopes. When a few cells die like that, they tend to kill the other cells in the same parallel group and often can kill cells in the series groups adjacent to them. You could be looking at replacing a large number of cells outside of the ones with obvious damage, and it will be hard to confirm that you’ve found all the dead cells without pulling apart most of the pack. If you’d like to try, there’s a chance you can end up saving the pack for less than the cost of replacing it, but it’s going to be an uphill battle.

If you have time, I’d be curious to hear about the pros and cons of this kind of approach. Is the main drawback simply the cumulative size of the plastic housing? Or is there some other limitation to this kind of hardware that makes it unsuitable?

Regarding you question, if I understand you correctly, it seems that your 18650 lithium battery will be smaller than the old NiCad battery, so you have extra room in the battery box that needs to be filled, correct? My recommendation is to use some type of fairly rigid foam to fill the space. It adds almost no weight and it also helps cushion the battery pack.

I want to take the apart and use the cells to make a 48V 16.8ah battery. Would you advice against this? Would 48V provide a noticeable difference in the power of my motor? (It is a 500W Falco Direct Drive Hub Motor)

SLA-Sealed Lead Acid. Deep-cycle electric wheelchair batteries. Nobody pedals a wheelchair, so their bulk and weight were not an issue, but their low price keeps them as the battery of choice for wheelchairs and mobility scooters for the elderly. For a bicycle, the industry was on a constant lookout for something better.

One term you will frequently come across is the ‘C’ rate of a battery pack. This is a way of normalizing the performance characteristics so that batteries of different capacity are compared on equal terms. Suppose you have an 8 amp-hour pack. Then 1C would be is 8 amps, 2C would be 16 amps, 0.25C would be 2 amps etc. A higher ‘C’ rate of discharge is more demanding on the cells, and often requires specialty high rate batteries.

I was wondering, though, if I could use thick gauge wire instead of nickel strips (copper wires are much more accessible). Would there be any downsides to that, given that I’m going to be using solder anyway?

“e bike lithium ion battery -scooter battery”

HERE ARE 50 GENIUNE MOLI ICR-18650H 18650 CELLS. THESE WERE TESTED IN ONE OF OUR LIITOKALA TESTING STATIONS AND THESE ARE ALL BETWEEN 1201-1400MAH! THEY ARE UL LISTED CELLS AND MANUFACTURED IN CANADA …

With a budget in mind, here is a 36V charger (output 42V, exactly what a 36V li-ion pack needs) that I have used and found to be a good budget charger. It’s not super fast, at only 2A, but for just $20 shipped, it’s a great deal. You might have to wait about 3 weeks for it arrive from China though. http://www.aliexpress.com/item/100-240VAC-42VDC-2-0A-Lithium-LiPo-Battery-Charger-E-Bike-charger-suitable-for-10S-36V/559929087.html

I’m sorry but I’m not certain. Here in Israel we are on 50hz so I haven’t tried that model on 60hz. I do however have some friends in the US that have that model on 60hz. They have been happy with it, but I haven’t used it myself so I can’t say how it compares to my experience.

After writing my question, I did more research on these cells regarding overcharging and over-discharging and I see where you’re coming from regarding not having connections between the parallel cell blocks to smooth out differences between individual cells. So as a permanent installation, it’s not going to work. However, I’ve had another thought, which I’ve put at the final paragraph.

This page is embarrassingly old, referencing chemistries that are completely obsolete, and is due for a rewrite. In the meantime, we recommend checking out our Battery Kits Product Info page for a more current explanation on lithium specific battery packs.

It’s not impossible, but I don’t have high hopes. When a few cells die like that, they tend to kill the other cells in the same parallel group and often can kill cells in the series groups adjacent to them. You could be looking at replacing a large number of cells outside of the ones with obvious damage, and it will be hard to confirm that you’ve found all the dead cells without pulling apart most of the pack. If you’d like to try, there’s a chance you can end up saving the pack for less than the cost of replacing it, but it’s going to be an uphill battle.

LiFePo is 30 to 50% heavier and 10-20% more expensive than LiMn/LiNiCoMn. It’s safe but mainly, it’s got at least double the cycle life of LiMn/LiNiCoMn and seems to have an almost indefinite shelf life.

If the 4P10S multi-tube arrangement was for occasional use on long journeys, then it would be reasonable to release all of the cells and to charge them individually or in parallel to about 4V using a normal little single cell charger. Each would then be “top balanced” yes? Then mount them in the tubes, compress and connect the top terminal array and good to go. I’ve still got the quandary about whether to connect them in parallel to the main battery large output terminal.

If you want a LiPo battery pack, one of your better choices if you want to save money and have a lot of output amps is build one of your own from a Hobby King packs. This requires a lot of time and knowledge, not only in building the pack but also in managing it.  LiPo batteries can be extremely dangerous and prone to burst into fire if not assembled with a lot of precautions (BMS) and cared for properly.

Before I seal my batteries in heat shrink, I like to wrap them in a thin layer of foam for added protection. This helps keep the ends of your cells from getting dinged if the battery receives any rough treatment, which can happen accidentally in the form of a dropped battery or ebike accident. The foam also helps to dampen the vibrations that the battery will experience on the bike.

A big downside of lithium batteries is that they are much more expensive than lead acid batteries. Prices vary depending on the voltage and capacity of the lithium battery, but standard ebikes usually have lithium batteries starting in the $300 range and rising quickly from there. Most bikes I build have lithium batteries in the $400-$500 range.

Battery packs are made up of individual cells connected together. Each cell has a more or less constant voltage dependent on its chemistry. For NiCad/NiMH, this is about 1.2V, for lead acid it is 2.0V, and for lithium cells it is on the order of 3.7V. Typical ebikes and scooters are designed to run on 24, 36, or 48 Volts, so a number of cells have to be series connected into a ‘battery’ that has the desired net voltage. A nominal 36V pack could be made from 10 lithium cells, 18 lead acid cells, or 30 NiMH cells.

Hi Danl, that sounds like a very high power motor. Most consumer ebikes are in the 36V-48V range, so if your motor is advertised as being rated for those higher voltages then it’s definitely a more serious motor. If you’re looking for a ready-built and relatively inexpensive battery, then something like this might work for you, http://electricbikebatterycharger.com I haven’t personally used that battery. You can of course build your own battery just like I did in this article, and that way you’ll be sure to get exactly what you’re looking for. The AH’s required will depend on the quality of the battery. A batter rated for higher current will require fewer AH’s than a lower quality battery. I’d aim for at least 20AH, if not more on a motor of that size. It’s going to eat your battery quickly, so you’ll want more capacity to be able to ride longer.

I’m mostly kidding, but if you use cells that are rated for more current than you’re trying to pull from them, you’ll create a lot less waste heat and both options will be perfectly fine and healthy for the battery.

This is a great article, I was thinking about making including the batteries and controller in the front Wheel/Motor hub ala (Copenhagen Wheel & FlyKly) and then create something like a solid acrylic or fiber wanted to cover the whole thing and rearrange the batteries.

For the record, I just wanted to add my experiences with LiFePO4. I built an ebike with 16 Headway 40160S cells one year ago (48 Volts, 16 AH). They are rated at 10C maximum continuous discharge. I have my controller set for a maximum draw of 30 Amps, well below their ratings. The first BMS killed a couple of cells, which I replaced. Then I switched to a Signalab BMS and the cells have balanced nicely ever since. I’m up to 120 charge cycles and over 1500 miles.

If you’re like me, then you like hearing and seeing how things are done, not just reading about them. That’s why I also made a video showing all the steps I took here in one single video. The battery I build in this video is not the same exact battery, but it’s similar. It’s a 24V 5.8AH battery for a small, low power ebike. But you can simply add more cells to make a higher voltage or higher capacity pack to fit your own needs. Check out the video below:

BMS’s aren’t required, they just make life easier. As you mentioned, if you don’t use a BMS then you’ve got to diligently monitor your cells and use balance charging to manually balance your cells. A BMS just takes care of this hassle for you. A low quality BMS can cause problems, but good quality BMS’s shouldn’t risk cell damage.

Combining the metals brings out the best in each. NMC is the battery of choice for power tools and powertrains for vehicles. The cathode combination of one-third nickel, one-third manganese and one-third cobalt offers a unique blend that also lowers raw material cost due to reduced cobalt content“

Specifically, battery packs are made up from many cells: the lead acid ones are similar to those we use on our cars, while the lithium ones use the same technology as mobile phones. Apart from the chemical component inside their cells, the main feature that differentiates lead acid and lithium batteries is their size: the lead ones are heavy and have a short life (200 to 300 charge cycles), while the lithium ones are smaller and can last longer (from 500 to 1,000 charge cycles).

If any one battery cell varies significantly from the others, do NOT connect it to the other cells. Paralleling two or more cells of different voltages will cause an instantaneous and massive current flow in the direction of the lower voltage cell(s). This can damage the cells and even result in fire on rare occasions. Either individually charge or discharge the cell to match the others, or more likely, just don’t use it in your pack at all. The reason for the voltage difference could have something to do with an issue in the cell, and you don’t want a bad cell in your pack.

Lithium batteries are not 100% fire-safe. Some batteries are more dangerous than others, depending on the chemistry, whether it has BMS or not, and what kind of casing the battery is in. If the battery is cased in metal its less likely to burn your garage down, than if its encased in plastic. Also be aware that all BMS’s are not alike, some are good and others are crap, just like anything else in life.

RC packs may be fine for enthusiasts that know what they’re doing, but even telling others about them scares me! FIRE! And secondly, they typically don’t have any BMS so don’t have any inherent protection from over-under voltage or balancing. FIRE!

When it comes to lead acid batteries for ebike use, you’ll generally be looking for what’s called a “sealed lead acid” or SLA battery. SLAs come sealed in a hard plastic case and can be turned in any orientation safely without leaking acid. This makes them appropriate for ebike use. Wet cell lead acid batteries, like many car batteries, would leak dangerous acid if turned on their side or upside down, making them a bad idea for use on an electric bicycle, which is a lot more likely to get knocked over than a car. Remember to stick with SLAs – not wet cell lead acid batteries – for electric bicycle use.

A cell that provides close to a “real world” 2.8-Ah per 18650 cell is pretty impressive, and the 3C current-producing capability is perfect for E-bikes (a 15-Ah pack can provide a continuous 45A, and our favorite power level of 30A can be provided by a very small 10-Ah pack). If you know of anyone who builds a pack out of these, please contact us, as we are very keen to discover whatever strengths or weaknesses they may have. If you are shopping to buy these, make certain you get these specific part numbers, because similar part numbers will only have half the C-rate.

For a 24V 7s pack, I’ve used this BMS a few times and been quite happy with it: http://www.aliexpress.com/item/7S-Li-ion-Lipo-Batteries-Protection-Board-BMS-System-24V-29-4V-20A-Continuous-Discharge-350W/32336397316.html

For BMS’s, the highest quality ones come from a company called BesTechPower but they are more expensive. I have mostly used BMS’s from AliExpress. I’ve linked to a few examples of BMS’s I’ve used in the article above.

You would think they would help with cooling, but in reality there is little to no difference. They do create an air gap between cells but because that air is trapped inside the pack and can’t get out, it just turns into an oven. So you can glue your cells together and have them cook on a skillet or use those plastic spacers and have them bake in an oven 😉

Another disadvantage of lead acid batteries is the shorter lifespan. Most claim to be rated for over 200 cycles, but in practice I usually find many SLAs start showing their age at around 100 cycles. They’ll still work as they get up in years (or charge cycles), but you’ll begin seeing your range quickly decreasing. If you were traveling 15 miles per charge when the SLAs were new, a year later you could find yourself barely getting past 10 miles.

3. Sweepstakes Period: Entries will be accepted online starting on or about February 1st, 2018 at 12:00 AM and ending March 31st, 2018 at 11:59 PM. All online entries must be received by March 31st, 2018 at 11:59 PM. All times are (GMT-05:00) Eastern Time (US & Canada).

If you want to go 50mph and have a 500 or 1,000-watt monster motor on your electric bike you’ll need big expensive, heavy batteries, and you might as well buy a motor scooter or motorcycle. If you wan…

“enduring cb 10-12 _scooters batteries”

You mentioned that you made a discharger from halogens. Is there any reason not to just use a couple power resistors in parallel, like 2×25 ohm, 100w for a 13s6p pack? Do you know why it’s helpful to take it easy on the pack for the first couple cycles?

I’ve checked with a few people that have bought 220V european welders and used them in the US, and they all say they work fine (besides one that broke a few months later from an unrelated issue). As far as I can tell, regardless of whether its half or full phase, the transformer inside still sees the approximately 220V it’s looking for. Have you tested yours on 220V yet?

Most of the problems occur when charging an ebike because they are unsupervised and that is when a LiPo fire can burn down a house etc. Use common sense on where you are going to charge your bike or battery pack, so that if it does burst into flames it does not take your house with you. I have a big steel barbecue grill set up in my entryway which  I charge my battery packs in  as nice safeguard.  This involved taking the battery pack out of the bike after each ride but I am OK with that:

From what I can tell, the Faraday Porteur uses a 36V 5.8AH battery made from the same cells I used on the battery in this article. They only have two cells in parallel though, not three like in my battery shown here. You can build a battery just like theirs, or a 36V battery of any capacity. You could make a 12AH battery and triple your total range! Heck, you could even take a premade battery like this one and just replace the discharge cable with a XLR connector – it’d be an auxillary battery over three times as large as theirs for 2/3 the price!

Grew up in Los Angeles California, US Navy submarine mechanic from 1977-81/SanDiego. Hydraulic mechanic in the 1980’s/Los Angeles. Heavy equipment operator in the 1990’s/traveled to various locations. Dump truck driver in the 2000’s/SW Utah. Currently a water plant operator since 2010/NW Kansas

And if you don’t want to purchase my book (or you already have a lot of ebike knowledge), you can still support this site by simply clicking on this link before you shop on Aliexpress. Basically, that’s an affiliate link that shows Aliexpress that you came to them via my site. It doesn’t effect you at all, but if you make a purchase, this site will get a small percentage of the profit that Aliexpress makes. It’s a simple way to help support this site so I can pay the hosting and keep providing more free info (and to keep this site free of annoying ads). I have some of those affiliate links on a limited number of articles on my site. When I personally buy and test products that I find to be a combination of great quality and great prices, like these batteries, for example, I like to share them through those affiliate links. Again, it costs you nothing, but it allows me to keep cranking out more info and content for you guys!

Thank you for the article! I am currently making a battery for an electronic skateboard, so I need the layout to be as thin as possible to allow ample room underneath the deck. Currently, I have 6 packs of 3 cells welded in parallel, and would eventually like to create a battery which is 9 cells long, 1 wide, and 2 high, for 18 in total (the two packs of nine would then be welded in series). I am wondering if I could be able to make 2 battery packs by welding 3 of my current 3 cell packs together in parallel to make a long, yet skinny pack, and then welding both packs of nine in series using the alternating system. Essentially, I would be creating a pack that would look like 3 of the ones you show above when making your first series connection. Let me know what you think, and thank you!

You may have read recently about the “Bad Girl” of battery chemistries. Its rediculously high C-rate of 20C minimum (you can actually find them with a higher C-rate than this!) means that this is the battery of choice for Electric racers. A proper charging system is expensive, but the batteries themselves were surprisingly cheap when sourced directly from China. What’s the bad part? On rare occasions, they might…CATCH ON FIRE!? 

This is what I refer to “small cells”, the 18650 (cordless tool) type cells which need to be spot-welded or soldered together to form a large pack. The big advantage of these cells is they offer better cooling because of the nature of their shape to the LiPo soft pouches, and therefore have the capacity to last longer.

Assuming the original battery is a li-ion battery and has the same number of cells in series (same voltage), then yes it should charge it. However, looking at the picture of the battery in that listing, I can tell you that is not a picture a 24V 25AH battery. That picture has 6 cells, and a 24V 25AH battery will have something more like 56 cells. That picture looks like a 22V 3AH battery. It could be that https://en.wikipedia.org/wiki/Electric_bikes simply used the wrong picture in the listing, though I doubt it as that would be an insanely good price for that size of a battery. but I’d be wary of that offer either way.

If any one battery cell varies significantly from the others, do NOT connect it to the other cells. Paralleling two or more cells of different voltages will cause an instantaneous and massive current flow in the direction of the lower voltage cell(s). This can damage the cells and even result in fire on rare occasions. Either individually charge or discharge the cell to match the others, or more likely, just don’t use it in your pack at all. The reason for the voltage difference could have something to do with an issue in the cell, and you don’t want a bad cell in your pack.

I also soldered rather than spot welded and used 1.5mm2 solid core copper between cells, pre-bent to zig-zag shapes on a jig (current is then distributed between them). Offtakes were 4mm2. Soldering technique to minimise heat on the cells was to paint the cells and the wire with flux, load the soldering iron tip with enough solder to make the joint and then, while holding the wire on with the back of a wooden pencil, touch the molten solder to the cell/wire interface and immediately remove the soldering iron tip. This worked really well in terms of soldering quality and the solder cooled very quickly indeed. I cleaned the flux off with a baby wipe and then dried it with some paper kitchen towel.

I also don’t have a spot welder, and for the purpose of building a single 16S2P pack, I’m not sure I want to splurge on that extra $100+. I do have a whole tub of flux and a temperature-controlled soldering iron, so I’ll be attempting to solder the cells instead (extra hot and fast with lots of flux to avoid conducting too much heat into the battery internals from dwell time).

1. Eligibility: Sweepstakes (the “Sweepstakes”) is open only to those who sign up at the online sweepstakes page and who are at least 18+ years old at the time of entry. The sweepstakes is open to the legal residents of the Contiguous USA and Canada and is void where prohibited by law. Employees of Electric Bike Technologies LLC (the “Sponsor”) their respective affiliates, subsidiaries, advertising and promotion agencies, suppliers and their immediate family members and/or those living in the same household of each are not eligible to participate in the Sweepstakes. The Sweepstakes is subject to all applicable federal, state and local laws and regulations. Void where prohibited.

Lithium batteries made specially for ebikes often come with specific bicycle mounting points making them easy to bolt to the bike frame, seat post or rear rack. If you go with a different type of lithium battery without ebike specific mounts, you’ll likely have to put it in a bag on the bike, which is still a good option, and one that I even prefer sometimes. (Link to blog post of mine about center frame triangle batteries).

If you want to go 50mph and have a 500 or 1,000-watt monster motor on your electric bike you’ll need big expensive, heavy batteries, and you might as well buy a motor scooter or motorcycle. If you wan…

You are eligible for a full refund if no ShippingPass-eligible orders have been placed. You cannot receive a refund if you have placed a ShippingPass-eligible order. In this case, the Customer Care team will remove your account from auto-renewal to ensure you are not charged for an additional year and you can continue to use the subscription until the end of your subscription term.

If you’re like me, then you like hearing and seeing how things are done, not just reading about them. That’s why I also made a video showing all the steps I took here in one single video. The battery I build in this video is not the same exact battery, but it’s similar. It’s a 24V 5.8AH battery for a small, low power ebike. But you can simply add more cells to make a higher voltage or higher capacity pack to fit your own needs. Check out the video below:

Be aware the NCA chemistry can be had in a low-amp and high amp version. By having a single 3100-mAh cell inside the cylinder, the internal volume is maximized (good for laptops and cordless drills by providing the absolute longest run-time). But…by putting a couple of cell-divisions inside that same cylinder with a parallel connection, the internal volume is reduced to 2900-mAh, but the amp producing ability is doubled, with the NCA chemistry being advertised as capable of 10A per cell, which is roughly a C-rate of a continuous 3C.

Just completed the pipeline challenge 600km of grueling maintenance trail. plenty of sand, rocks pea gravel, some road stages. Running an 8T MAC in a 29ER with 2x 29E EM3ev triangle ebike battery packs (one borrowed from Kai in review above!) managed 99kms on a single charge using …

If you have some wire scrap left from any other project you could use them to lengthen the sense wires to your BMS and not need to relocate the BMS. Very little current travels through the sense wires so you can use very small diameter wire. Even the wire from an old USB cable would work.

If you want to step up a notch on the quality ladder, here is another good charger that I prefer even more, though it’s a bit more expensive: http://www.aliexpress.com/store/product/aluminum-shell-36V-42V-2Amper-Li-ion-Lipo-battery-charger-high-quality-charger-for-10S-li/1680408_32275847257.html

We like to use Anderson Powerpole connectors as the standard discharge plug on all of our ebike battery packs. These connectors are ingenious since they are genderless, allowing you to use the same plug both on both a load and a source, and the connector design allows them to withstand the arc of inrush current when plugged into capacitive loads much better than bullet style plugs. For the charging port, we like to use the female 3-pin XLR plug standard. This is directly compatible with the Satiator charger, and the quality Neutrik XLR plugs are rated for a full 15 amps per pin allowing very rapid charging. Unfortunately, this option is not available for the smaller Hailong frame batteries and we are forced to use the lower current DC 5.5mm barrel plug instead.

The chain is a very important bicycle part. It is responsible for turning the wheel when a cyclist pedals the bike. Problems with the chain create major riding problems. Chains commonly get dry or rusty,…

“replacement battery for electric scooter _lithium bike battery”

Addresses in the following State Codes AK, HI, AE, AP, AA, PR, GU, MP, PW, AS, VI, FM and APO/FPO addresses with U.S. ZIP Codes will ship for free with value shipping. You will see this noted in checkout.

9. Terms: Electric Bike Technologies LLC reserves the right, in its sole discretion to cancel, terminate, modify or suspend the Sweepstakes should (in its sole discretion) a virus, bugs, non-authorized human intervention, fraud or other causes beyond its control corrupt or affect the administration, security, fairness or proper conduct of the Sweepstakes. In such case, Electric Bike Technologies LLC may select the recipients from all eligible entries received prior to and/or after (if appropriate) the action taken by Electric Bike Technologies LLC. Electric Bike Technologies LLC reserves the right at its sole discretion to disqualify any individual who tampers or attempts to tamper with the entry process or the operation of the Sweepstakes or website or violates these Terms & Conditions.

Thank for the great article. I made battery packs already, do you have any recommendations on chargers. I have a 53 volt pack 30 amp hr. I don’t know what charger to buy, and I’m worried as lithium batteries tend to blow up if not handled correctly.

When it comes to the nickel strip you’ll be using to connect the 18650 batteries together, you will have two options: nickel-plated steel strips and pure nickel strips. Go for the pure nickel. It costs a little bit more than nickel plated steel but it has much lower resistance. That will translate into less wasted heat, more range from your battery, and a longer useful battery lifetime due to less heat damage to the cells.

It makes very little difference whether you have a small geared motor, a large direct drive motor, or a mid-drive motor. The mileage and range figures for a given battery have to do with how you use the ebike, not which motor system is on the bike.

I would advise against connecting one battery to the other’s charging port. That charging port, as you correctly stated, is wired to a charging circuit on the BMS which is usually meant to take 5A max, sometimes less, whereas the discharging side of the BMS usually puts out at least 15A, sometimes much more. You can easily fry your BMS by connecting a second battery to its charge port.

“The secret of NMC lies in combining nickel and manganese. An analogy of this is table salt, in which the main ingredients of sodium and chloride are toxic on their own but mixing them serves as seasoning salt and food preserver. Nickel is known for its high specific energy but low stability; manganese has the benefit of forming a spinel structure to achieve very low internal resistance but offers a low specific energy.

HERE ARE 50 GENIUNE MOLI ICR-18650H 18650 CELLS. THESE WERE TESTED IN ONE OF OUR LIITOKALA TESTING STATIONS AND THESE ARE ALL BETWEEN 1201-1400MAH! THEY ARE UL LISTED CELLS AND MANUFACTURED IN CANADA …

Sizing a bike correctly is important for pedaling efficiency and safety. Fitting a bike involves many factors. However, the basic considerations before buying a bike include frame size, seat height, and…

Since you mentioned the charger, the link you sent me came with a 2 amp charger but it would take 10 hours to charge that size battery. Could I use a larger amp charger like 5 or even more for faster charging? How do you tell what is too much so you don’t damage the battery? https://en.wikipedia.org/wiki/Electric_bikes have a homemade battery made up of 84 NCR18650b cells that I bought (in other words, I didn’t make the battery myself). Anyway, I lost the charger for it at Burning Man, and now I’m going nuts trying to figure out what kind of charger to buy. The arrangement of the batteries is odd. Part of the battery looks pretty straight forward in what I believe is a 8s6p design, but the rest look different… they are set up like a 4×3 rectangle framed by 2 L’s. I would have happily uploaded a picture, but that doesn’t seem possible. Is there anyway I can send you a picture to show you what I mean?

Yes, as I understand it, Nimh and NiCd batteries charge differently. I understand lithium batteries much better than those other technologies, so don’t quote me on this, but I believe that Nimh and NiCd cells have current powered through them and the voltage control is different, as opposed to lithium cells that draw current at the charger’s preset rate and then keep drawing until the voltage floats to 4.2V, at which point the already tapering charger’s current supply is cutoff and the battery is fully charged.

What I would recommend doing is trying to ride again and when the battery cuts off, take it inside and measure the voltage of each parallel group before you try recharging it. Measure straight on the battery. If you find one group that is lower than the rest, it is likely the problem. It might have risen back up to a reasonable voltage with no load, but it can still be lower than the rest.

Before I seal my batteries in heat shrink, I like to wrap them in a thin layer of foam for added protection. This helps keep the ends of your cells from getting dinged if the battery receives any rough treatment, which can happen accidentally in the form of a dropped battery or ebike accident. The foam also helps to dampen the vibrations that the battery will experience on the bike.

Just kidding, here’s a little more detail. 1) Yes, actually you could just use one strip of nickel on series connections to make the electrical connection, but one strip of 0.15mm thick nickel strip can only safely carry less than 10A. Ideally you want at least one strip for every 5-7A you plan to pull through the battery. 2) You can definitely do the series connections first, it is just habit for me to do parallel connections first. Also, on larger packs I like to do parallel groups first and then glue them together and do the series connections as I glue each group. 3) People have explored this idea a bit on Endless Sphere, and while it can be done, it has a lot of room for error, mostly in keeping the spring loaded contacts permanently against the cell terminals and in keeping the contacts from corroding. Spot welding is the best method, in my opinion.

The only thing left to do at this point is to add the connectors, unless you did that before you soldered the wires on, which I actually recommend doing. But of course I didn’t do that, so I added them at this step, being careful not to short them by connecting only one wire at a time.

NiMH-Nickel Metal Hydride. This was the battery of choice for military application and the first-gen Prius hybrid car. Very reliable and stable, with a long cycle life. It has a high nickel content, so its expensive now (but the nickel can be re-cycled). With a low C-rate, you need a very big battery to draw high peak amps. Perhaps not a problem on a car with its huge battery pack, but on a bicycle, the smaller pack restricts the user to low amp-draw performance.